Formal Verification of the rank Algorithm for
Succinct Data Structures *

Akira Tanaka! Reynald Affeldt! Jacques Garrigue®

! National Institute of Advanced Industrial Science and Technology (AIST)
2 Nagoya University

Abstract. Succinct data structures are designed to use a minimal amount of com-
puter memory in a time-efficient way. Their correct implementation is essential
to big data analysis. Yet, succinct data structures are difficult to verify because
they rely on bit-level manipulations better achieved with low-level languages. In
this paper, we report on the formal verification of the standard Jacobson rank
algorithm using the Coq proof-assistant and extract an OCaml implementation
from it. This requires overcoming the mismatch between Coq being a purely
functional programming language and succinct data structures being inherently
imperative. To enjoy the best of both worlds, we propose to use code extraction
from Coq to OCaml but with an original (tested but unverified) implementation
of bitstrings. We can then use Coq to formalize correctness, including important
claims about storage requirements, and still obtain efficient native code. To the
best of our knowledge, this is the first application of formal verification to suc-
cinct data structures.

1 Towards Formal Verification for Succinct Data Structures

Succinct data structures are data structures designed to use an amount of computer
memory close to the information-theoretic lower bound in a time-efficient way (see [18]
for an introduction). They are used in particular to process big data. Concretely, succinct
data structures make it possible to provide data analysis with a significantly reduced
amount of memory (for example, one order of magnitude less memory for string search
facilities in [2]). Thanks to an important amount of research, succinct data structures are
now equipped with algorithms that are often as efficient as their classical counterparts.
In this paper, we are concerned with the most basic one: the rank algorithm, which
counts the number of 1 (or 0) in the prefixes of a bitstring (for example, rank is one
of the few basic blocks in the implementation of [2]—see appendix A of the technical
report). The salient property of the rank algorithm is that it requires o(n) storage for
constant-time execution where 7 is the length of the bitstring (see Sect. 2 for background
information).

Our long-term goal is to provide formal verification of algorithms for succinct data
structures. In particular, we aim at the construction of a realistic library of verified
algorithms. Such a library could significantly improve the confidence in software im-
plementation of big data analysis. However, software implementations of algorithms

*This is preprint with appendix of a paper to be presented at ICFEM 2016:
http://icfem2016.xyz/

for succinct data structures are difficult to verify. Indeed, since these data structures are
designed at the bit-level and since performance is a must-have, they are usually written
in low-level languages (e.g., C++ for SDSL [16]). The direct verification of C-like lan-
guages is now possible [14] but it requires a substantial infrastructure (concretely, an
instrumented formal semantics of the target language) whose development is orthogo-
nal to the problem of verifying succinct data structures.

In this paper, we show how to develop a verified implementation of an algorithm
for succinct data structures using the Coq proof-assistant [5]. Coq provides us with the
ability to reason about the correctness of the algorithm: its functional correctness but
also the important properties about storage requirements. We can also derive an efficient
implementation thanks to the extraction facility from Coq to the OCaml language and
the imperative features of the latter. The main issue when dealing with algorithms for
succinct data structures in Coq is that, since Coq is a purely functional language, arrays
are better represented as lists to perform formal verification. However, lists do not enjoy
constant-time random-access, making it difficult to use the extraction facility of Coq
to generate efficient OCaml algorithms. As a solution, we provide an OCaml library
for bitstrings with constant-time random-access that matches the interface of Coq lists
so that we can use real bitstrings in the extracted code. This approach augments the
trusted base but in the form of a localized, reusable library of OCaml code whose formal
verification can anyway be carried out at a later stage. We think that this is a reasonable
price to pay compared to the benefits of carrying out formal verification in Coq.

Paper Overview In this paper, we demonstrate our approach by building a verified
implementation of the rank function using the Coq proof-assistant. More precisely, we
provide formal verification for the rank function (formal proof of functional correctness
in Sect. 5.2 and formal proof for storage requirements in Sect. 5.3) and extraction to
executable OCaml code (by providing in particular a new library for bitstrings with
constant-time random-access in Sections 4.2 and 4.3). We will be able to check that the
time-complexity of the extracted code is as expected (i.e., execution is constant-time,
see Sect. 6.2). In the process, we discuss thoroughly the choices we made, in particular,
the modular approach we took when formalizing the rank function in the Coq proof-
assistant (generic version in Sect. 3.1 and its instantiation in Sect. 5.1).

2 A Formal Account of the rank Algorithm

We explain what the rank algorithm is supposed to achieve (its functional correctness,
Sect. 2.1) and how Jacobson’s rank actually achieves it (in particular, its storage require-
ments, Sect. 2.2). These points are addressed formally using Coq resp. in Sections 5.2
and 5.3.

2.1 Specification of the Functional Correctness of the rank Algorithm

Given a bitstring s and an index i in s, rank,(i) counts the number of 1’s up to i (ex-
cluded). For example, in Fig. 1 (the first and second-level directories will be explained
in Sect. 2.2), s contains 26 1’s, rank;(4) = 2, rank;(36) = 17, and rank,(58) = 26.

n

input
bitstring [1001 0100 11100100 1101 0000 1111 0100 1001 1001 0100 0100 0101 0101 10

SZ1 SZ1 SZ1

first-level

directory 7 15 21 -

SZp SZp SZp SZp SZp SZp SZp SZp SZp SZp SZp SZp SZp SZp

second-level
directory | 2 | 3 | 6

31317

415

Fig. 1. Ilustration for the rank algorithm (sz; = 4, sz; = 4 X szp, n = 58). Example extended
from [13].

The mathematically-inclined reader would formally specify the rank algorithm as
rank(i) = |{k € [0,...,i)|s[k] = b}| where b is the query bit (b = 1 in the example
above). Using the Coq proof-assistant, such a specification can be formalized directly.
For bits, one can use the Coq type for booleans bool. An input bitstring can be formal-
ized as a list of booleans (type seq bool in Coq). An index i is a natural number (type
nat in Coq). A functional programmer would formally specify the rank algorithm as
list surgery and filtering. For example:

Definition rank b i s := count_mem b (take i s).

We regard this Coq function as the specification of the functional correctness of the rank
algorithm. Note that it does not provide an efficient implementation: it can be executed
(both in Coq and as an extracted OCaml program) but computation would (hopefully)
be linear-time. In this paper, we provide Coq functions that are more realistic in the
sense that they can be extracted to executable OCaml code.

2.2 Jacobson’s rank Algorithm and Its Space Complexity

Jacobson’s rank algorithm [11] is a constant-time implementation of rank. It uses aux-
iliary data structures, in particular two arrays called the first and second-level direc-
tories that essentially contain pre-computed values of rank for substrings of the input
bitstring s of size n (see Fig. 1). More precisely, each directory contains fixed-size inte-
gers, whose bit-size is large enough to represent the intended values, so that the bit-size
for each directory depends on n.

Let sz, be the size of the substrings used for the second-level directory. Hereafter,
we refer to these substrings as the “small blocks”. The size of the substrings used for
the first-level directory is sz; = k X sz, for some k. We refer to these substrings as the
“big blocks”. The first-level directory is precisely an array of n/sz; integers such that
the ith integer is rank,((i + 1) x sz;). The second-level directory is also an array of
integers. It has n/sz, entries and is such that the ith entry is the number of bits among
the (i%k + 1) x sz, bits starting from the ((i/k) x sz1)th bit (/ is integer division and
% is the remainder operation). One can observe that when i%k = k — 1, the ith entry of
the second-level directory (the hatched rectangles in Fig. 1) can be computed from the
first-level directory and therefore does not need to be remembered.

Given an index i, Jacobson’s rank algorithm decomposes i such that rank, (i) can be
computed by adding the results of (1) one lookup into the first-level directory, (2) one
lookup into the second-level directory, and (3) direct computation of rank for a sub-
string shorter than sz;. For example, in Fig. 1, rank;(36) = rank(2 x 16+ 1 x 4 +0)
is computed as 15+ 2 and rank;(58) = rank,(3 x 1642 x 4+2), as 21 +4 + 1. Since
the computation of rank for a substring shorter than sz in (3) can also be tabulated or
computed with a single instruction on some platforms, rank’s computation is constant-
time.

It can be shown (and we will do it formally in Sect. 5.3) that the directories require
only —— + Znlogylogyn o(n) bits with integers of the appropriate size (not necessarily

logyn logy n
the word size of the underlying architecture).

3 Our Approach: Extraction From a Generic rank Function

In a nutshell, our approach consists in (1) providing a generic implementation of the
rank algorithm to keep formal proofs as high-level as possible and (2) extracting OCaml
code from a concrete instantiation of the rank algorithm. As explained in Sect. 1, this
approach makes it difficult to obtain efficient OCaml code because of the conflicting
requirements between the data structures at the formal proof level and at the implemen-
tation level. We make this idea clearer in Sect. 3.2 where we also justify our approach.
Before that, we explain the (generic) rank algorithm that we will verify and extract
(instantiation to be found in Sect. 5.1).

3.1 A Generic Rank Algorithm Formalized in Coq

The generic version essentially consists of two functions: one that constructs the direc-
tories and one that performs the lookup.

To simplify the presentation, we first explain a function that counts bits in a naive
way?. beount b i 1 s counts the number of bits b (0 or 1) inside the slice [i,...,i + 1)
of the bitstring s (essentially a list of booleans—see Sect. 4.1):

Definition bcount b i 1 s := count_mem b (take 1 (drop i s)).

In the code below, we use notations from the Mathematical Components [7] library:
.+1 is the successor function, %/ and %% are the integer division and modulo operators,
and if x is xp.+1 then el else e2 means: if x is greater than O then return e1 with xp
bound to x — 1, else return e2.

Construction of the Directories The function buildDir computes both directories in
one pass (it returns a pair). It has been written with extraction in mind. In particular, it
uses tail calls, and indexing instead of list pattern-matching.

j is a counter for small blocks (we start counting from nn, the total number of small
blocks, i.e., n/sz). i is a counter to count small blocks in one big block. n1 contains the

3 The function bcount is not intended to be extracted as it is but replaced by a more efficient
function. It could be tabulated as explained in Sect. 2.2, but in this paper, it will be replaced by
a single gcc built-in operation (see Sect. 4.2).

(e <IN e R R N O R S

—_— = =
N - O O

number of bits counted so far for the current big block. n2 contains the number of bits
counted so far for the current small block. D1 (resp. D2) are abstract data types meant for
the first-level (resp. second-level) directory (so that emptyD1, pushD1, etc. are meant to
be instantiated with concrete functions later).

The function buildDir iterates over the number of small blocks. At each iteration,
the number of bits in the current small block is stored in m (line 2) (b is the query bit,
sz2 is the size of small blocks, inbits is the input bitstring). For each small block, n2
is stored in the second-level directory (line 4). After a big block has been scanned, the
number of bits counted so far for the current big block n1 + n2 is stored in the first-level
directory (line 8). The number of small blocks in one big block (kp plus 1) is used to
control the iteration inside a big block (line 10).

Observe that the directories built by buildDir are slightly different from the data
structures explained in Sect. 2.2: they start with a O (stored at line 8 for the first-level
directory and stored at line 9 for each group of small blocks) which is of course not
necessary but this simplifies the lookup function.

Fixpoint buildDir j i n1 n2 D1 D2 :=

let m := bcount b ((nn - j) % sz2) sz2 inbits in
if i is ip.+1 then
let D2' := pushD2 D2 n2 in

if j is jp.+1 then buildDir jp ip n1 (n2 + m) D1 D2'
else (D1, D2")

else
let D1' := pushD1 D1 (n1 4+ n2) in
let D2' := pushD2 D2 0 in

if j is jp.+1 then buildDir jp kp (n1 + n2) m D1' D2'
else (D1', D2"').
Definition rank_init_gen := buildDir nn 0 0 O emptyDl1 emptyD2.

Lookup The function rank_lookup_gen is a generic implementation of the lookup
function. It computes the rank for index i:

Definition rank_lookup_gen i :=

let j2 := 1 %/ sz2 in (* index in the second-level directory =)
let j3 := i %% sz2 in (x index in a small block x)
let j1 := j2 %/ k in (* index in the first-level directory x*)

lookupD1 j1 D1 + lookupD2 j2 D2 + bcount b (j2 = sz2) j3 inbits.

j1 (resp. j2) is the index of the block in the first-level directory (resp. second-level
directory). They are computed using the size of small blocks sz2 and the ratio between
the size of big and small blocks k (or in other words, sz1 = k % sz2). lookupD1 (resp.
lookupD2) is meant to perform array lookup; it will be instantiated later.

3.2 Our Approach w.r.t. Extraction

In the code above, lookup in the directories is meant to be performed by the functions
lookupD1 and lookupD2. Constant-time execution for these functions is required for Ja-
cobson’s rank function to be efficient. If we implement these functions with nth-like
access to standard 1ists (which is linear-time), Coq will not generate OCaml functions

with the desired time complexity. At first, one may think of looking for an ingenious
implementation scheme that may cause Coq to generate efficient OCaml code. This ap-
proach seems to us too optimistic as a first step towards the goal of providing a verified
library of functions for succinct data structures for the following two reasons:

— Coming up with new implementation schemes is likely to make more difficult the
task of proving formally the functional correctness and the storage requirements
of algorithms.

— The code extraction facility of Coq is not optimized in any way (by design, be-
cause it is part of the trusted base). In practice, it tends to generate inefficient
code for convoluted formalizations. As a matter of fact, previous work shows that
Coq requires significant engineering to handle imperative features and native data
structures (e.g., [3]).

Instead, our approach consists in (1) making the best we can out of list-like data struc-
tures in Coq and (2) providing an efficient OCaml implementation of the list interface
that we will substitute to Cog-generated functions.

4 An OCaml Bitstring Library for Coq Lists of Booleans

Direct extraction of Coq lists and list functions suffers two major problems w.r.t. suc-
cinct data structures: (1) memory usage is very inefficient (assuming 64-bit machine
words, it would take 192 bits to represent one boolean), (2) random-access will be
linear-time instead of the required constant-time complexity. We now explain an OCaml
implementation for the interface of Coq lists that solves above problems.

4.1 Bitstrings Formalized in Coq

We define bitstrings as an inductive type which wraps Coq lists:

Inductive bits : Type := bseq of seq bool.

The type bits is isomorphic to the type of lists of booleans. In consequence, many
functions for bits are easily derivable from Coq standard functions size, nth, ++ (con-
catenation), etc. In particular, we equip our formalization with a coercion that transpar-
ently turns the type bits into the type seq bool. Concretely, this coercion is the func-
tion Definition seq_of_bits s:=match s with bseql => 1 end. that is automatically in-
serted by Coq to make types match. For example, size s below should actually read as
size (seq_of_bits s).

Definition bnil := bseq nil.

Definition bsize (s : bits) := size s.

Definition bnth (s : bits) i := nth false s 1i.
Definition bappend (s1 s2 : bits) := bseq (s1 ++ s2).

However, code extracted from above functions does not achieve the desired complex-
ity. For example, the code extracted from bsize, bnth, and bcount (Sect. 3.1) would be

linear-time because these functions scan the lists obtained from bits*. Regarding mem-
ory usage, the list constructor cons would allocate one memory block per argument (see
Fig. 2, on the left, for an illustration). In addition, OCaml needs one more word for each
block to manage memory. Assuming the machine word is 64 bits, cons would therefore
need 192 bits to represent a Coq bool, that was supposed to represent a single bit. . .

In the next section (Sect. 4.2), we provide OCaml definitions to replace the Coq
type bits, its constant bnil and the functions bsize, bnth, bappend, etc. How the OCaml
definitions are substituted for the Coq definitions is explained in Sect. 6.1.

4.2 Bitstrings Implemented in OCaml

The main idea to achieve linear-time construction and constant-time random-access in
OCaml is to implement bitstrings using a datatype that allows for random-access of bits.
For this purpose, we use the type bytes introduced in OCaml 4.02.0 °. The resulting
OCaml type is as follows®:

type bits_buffer = { mutable used : int; data : bytes; }
type bits = Bdummy®@ | Bdummy1 | Bref of int * bits_buffer (* len, buf %)

Bitstrings are stored in a bits_buffer as a value of type bytes together with the num-
ber of bits used so far. (The first bit is the least significant bit of the first byte in the
bytes.) Let us first explain the constructor for arbitrary-length bitstrings (Bref) and
then explain how short bitstrings are implemented as unboxed integers (this will ex-
plain Bdummy@ and Bdummy1).

bits represented with Bref The data structure Bref (len,buf) (depicted on the right
of Fig. 2) represents the prefix of size len of the bitstring buf. Let us call used the value
of the field used of the corresponding bits_buffer data structure.

l

—>

Lo [of—{bi [ef—{b:] o] Lien | oF——{bubibz [[

—>
used

Fig. 2. A Coq bits on the left and the corresponding OCaml bits on the right

The dynamics of Bref is as follows. Initially, a Bref has O as len and references
a bits_buffer with used as 0, which means that the bitstring is empty. When a bit
is appended to the Bref, the bits_buffer is destructively updated and a new Bref
is allocated. The bit is assigned to the used” bit in data and used is incremented. A
new Bref is allocated with incremented /en and reference the bits_buffer. (When the

4 Let s be a bitstring of length n. bsize sis O(n), bnth i sis O(i), bcount b i 1 sis O(i+1).
bcount requires an additional O(i) because of the drop function (see Sect. 3.1).

5 Currently, bytes is the same as string; OCaml plans to change string to immutable.

6 The OCaml definitions below belong to the module Pbi ts; the prefix Pbits. is omitted when
no confusion is possible.

bits_buffer is full (i.e., 8 X |data| = used), data is copied into a new bytes with a
doubled length before the bit is appended.) Array construction always append a bit to
Bref which len is equal to used.

The constructor Bref can represent any bitstring but it requires memory allocation
for each value, even to represent an empty bitstring, a single boolean, etc. We can im-
prove efficiency by avoiding memory allocation for bitstring that fit in machine words.
Note that there is no soundness problem in losing sharing of bitstrings, because bit-
strings bits are immutable in Coq.

bits represented with unboxed integers In summary, we use the unboxed integers of
OCaml to represent short bitstrings. In OCaml, values are represented by w-bit integers,
w being the number of bits in a machine word (32 or 64). These integers represent
either (1) a (w — 1)-bit unboxed integer or (2) a pointer to a block allocated in the
heap. OCaml datatypes use unboxed integers for constant constructors, and pointers
to blocks otherwise. Therefore, we can represent short bitstrings by unboxed integers.
More precisely, we represent bitstrings of length u < w—2 as a (w— 1)-bit integer using
the following format: 0...01b,_1 ...b1bg1 (the position of the topmost 1 represents the
length of the bitstring and the trailing 1 is a tag bit to distinguish unboxed integers from
pointers). To treat the latter integers as bits we use Obj.magic. For example, bnil
(0...011) is defined as follows.

let bits_from_int bn = ((Obj.magic (bn : int)) : bits)
let bnil = bits_from_int 1 (* the tag bit is invisible in 0Caml x)

The reason for adding the constructors Bdummy® and Bdummy1 to the datatype bits is
technical. Without them, OCaml optimizes pattern-matching (discrimination of values
with match) if a datatype has no constant constructor (assuming that the value must be
a pointer), or if it has only one constant constructor (assuming that any non-zero value
must be a pointer). Adding two constant constructors disables these optimizations, and
allows us to safely use pattern-matching to discriminate unboxed integers from Bref
blocks.

OCaml Functions for Bitstrings Using the OCaml bits datatype, we have imple-
mented OCaml functions that match the Coq functions of Sect. 4.1 but with better com-
plexities, as summarized in Table 1. For this purpose, we make use of OCaml impera-
tive features such as destructive update and random access in bytes. Details about the
OCaml implementation can be found in appendix A.

Table 1. Time complexity of OCaml functions w.r.t. their Coq counterparts (n and n’ are the
lengths of sand s’)

Function Complexity in Coq Complexity in OCaml
bsize s O(n) o(1)
bnth s i 0(i) o(1)
bappend s s' |O(n) O(n') (amortized, for array construction)
bcount b i 1 s|O(i+]1) o(l)

4.3 From Natural Numbers to Fixed-size Integers

At the abstract level, the rank algorithm stores natural numbers in directories but a
concrete implementation manipulates fixed-size integers instead. For this reason, we
extend our Coq formalization and OCaml implementation of bitstrings with functions
to manipulate fixed-size integers:

— bword u n builds a short bitstring from the lower u < w — 2 bits of a natural num-
ber n in constant-time. In OCaml, a natural number is formatted as b,,_,...b1bgl,
where w is the number of bits in a machine word. In order to construct short bit-
strings as unboxed integers following the format explained in Sect. 4.2, we use
simple bit operations: clear the higher bits, b,,_5...b, 1, and set the topmost bit,
by.

— getword i u s looks for the u < w — 2 bits (ordered with least significant bit
first) starting from index i in s, regarding them as a natural number. In OCaml,
this function is implemented by accessing data at the level of bytes (not bits) to
reduce the overhead (number of bit operations and number of loops).

Using these functions, it becomes possible to provide a concrete instantiation of
directories. For example, let us consider the first-level directory, that stores fixed-size
integers of size wi. Its implementation is summarized in Table 2. Let D1Arr be the type
of the first-level directory. An empty first-level directory is implemented by an empty
array emptyD1 that is just an empty bitstring bnil. The result of appending an unboxed
integer n (seen as a w1-bit bitstring) to the first-level directory s is implemented by the
array pushD1 wl's n. lookupD1 w1 i s is the i’ pushed in the first-level directory s.

Table 2. Interface and implementation of the first-level directory using generic array functions

Interface Implementation
D1Arr bits
emptyD1 : D1Arr bnil
pushD1 w1l s n : D1Arr|bappend s (bword w1l n)
lookupD1 w1l i s : nat|getword (i * wl) wl s

5 Formal Verification of an Instance of the Generic rank
Algorithm

We instantiate the generic rank function of Sect. 3.1 to obtain a concrete implemen-
tation of Jacobson’s rank algorithm. Then, we prove that this implementation indeed
computes rank (as specified in Sect. 2.1) and fulfills storage requirements (as seen at
the end of Sect. 2.2).

5.1 Instantiation of the rank Algorithm

We instantiate the functions from Sect. 3.1 (rank_lookup_gen and rank_init_gen) with
the array of bits from Sect. 4.3. The parameters of this instantiation (number and size

[N R N S

of blocks in the directories, etc.) are important because they need to be properly set
to achieve the storage requirements specified in Sect. 2.2. For the sake of clarity, we
isolate these parameters by means of two datatypes. Record Param carries the parameters
of Jacobson’s algorithm. Record Aux essentially carries the results of the execution of the
initialization phase:

Record Param : Set := mkParam 7 Record Aux : Set := mkAux
{ kp_of : nat ; 8 { query_bit: bool;
sz2p_of : nat ; 9 input_bits: bits;
nn_of : nat ; 10 parameter: Param;
wl_of : nat ; 11 directories: D1Arr x D2Arr }.

w2_of : nat }.

Jacobson’s algorithm is parameterized by the number of small blocks (minus 1) in a big
block (or sz; /sz; — 1) (field kp_of, line 2), the number of bits (minus 1) in a small block
(or szy — 1) (line 3), the number of small blocks (line 4), and the bit-size of fixed-size
integers for each directory (lines 5—6). The instantiation of rank_init_gen returns the
query bit (line 8), the input bitstring (line 9), the parameters of Jacobson’s algorithm
(line 10), the first and second-level directories themselves (line 11).

The instantiation of rank_init_gen is a matter of passing the appropriate parameters
and the functions D1Arr, D2Arr, etc. that we explained in Sect. 4.3:

Definition rank_init b s : Aux :=
let param := rank_param (bsize s) in
let wl := wl_of param in let w2 := w2_of param in
mkAux b s param
(rank_init_gen b s param
D1Arr emptyD1 (pushD1 wl) D2Arr emptyD2 (pushD2 w2)).

Similarly, rank_lookup_gen is instantiated with the parameters resulting from the
execution of rank_init together with the functions D1Arr, D2Arr, etc. from Sect. 4.3:

Definition rank_lookup aux i :=

let b := query_bit aux in
let param := parameter aux in
let wl := wl_of param in let w2 := w2_of param in

rank_lookup_gen b (input_bits aux) param
D1Arr (lookupD1 wl) D2Arr (lookupD2 w2)
(directories aux) 1i.

5.2 Functional Correctness of Jacobson’s Algorithm in Coq

The functional correctness of Jacobson’s algorithm is stated using the generic rank
function (rank_lookup_gen, Sect. 3.1) with its formal specification (rank, Sect. 2.1). As
a matter of fact, we do not need to assume any concrete instantiation of the directories
to establish functional correctness, the generic properties of arrays are sufficient.

Lemma rank_lookup_gen_ok_to_spec : forall i dirpair,
i <= size inbits ->
dirpair = rank_init_gen b inbits param

D1Arr emptyD1 pushD1 D2Arr emptyD2 pushD2 ->
rank_lookup_gen b input_b param
D1Arr lookupD1 D2Arr lookupD2 dirpair i = rank b i inbits.

The many parameters D1Arr, D2Arr, etc. come from the array interface that we imple-
mented using the Section mechanism of Coq.

5.3 Space Complexity of Auxiliary Data Structures

The required storage depends on the parameters of Jacobson’s algorithm explained in
Sect. 5.1. They should be chosen appropriately to achieve o(n) space complexity. We
use the following parameters. They are taken from [4, Sect 2.2.1]. We add 1 to sz, and
k to make them strictly positive for all n > 0.

k= [logy(n+1)]+1 w1 = [logy(|n/sz2] x sz +1)]
szp = [logy(n+1)] +1 wy = [log,((k—1) xszy+1)]
sz1 =k x szy = ([logy(n+1)] +1)?

The formalization in Coq of above parameters is direct. Below, bitlen n’ is Coq
code for [log,(n+1)]:

Definition rank_default_param n :=

let kp := bitlen n in (* k-1 x)

let sz2p := bitlen n in (x sz2-1 %)
let sz2 := sz2p.+1 in

let nn := n %/ sz2 in

let wl := bitlen (n %/ sz2 % sz2) in
let w2 := bitlen (kp * sz2) in

mkParam kp sz2p nn wl w2.

Using these parameters, we showed that the asymptotic storage requirement for the
auxiliary data structures is indeed o(n), more precisely 2 + %;Zgz"
to [4, Theorem 2.1].

For the sake of illustration, let us show how we prove in Coq that the contribution
of the first-level directory to space complexity is 15 é’zn. First, we fix rank’s parameters
using the following declaration:

, similarly

Definition rank_param n:=rank_param_w_neqg® (rank_default_param n).

rank_default_param has been explained just above. rank_param_w_neq@ is just a techni-
cality to take care of the uninteresting case where the length of input bitstring is zero®.
The contribution of the first-level directory to space complexity is the length of the bit-
string that represents it, i.e., size (directories (rank_init b s)).1 (.1 stands for the first

projection of a pair). In Coq, we proved the following lemma about this length:

7 This function is implemented in C using gee’s __builtin_clz1 [6], which counts the number
of leading zeros in a long value. gcc generates LZCNT instructions (since Intel AVX2 [8]).

8 In this case, w1 and w2 become 0 and our word array cannot distinguish an empty array and
non-empty array.

AN N AW -

Lemma rank_spaceD1 b s
size (directories (rank_init b s)).1 =
let n := size s in let m := bitlen n in
((n %/ m.+1) %/ m.+1).+1 = (bitlen (n %/ m.+1 %= m.+1)).-1.+1.

(.-1is notation for the predecessor function.)
For the sake of readability, we write this Coq expression using mathematical nota-
tions (in the case where n > 3):

W with :
o1 1 +1|p m = [logy(n+1)]
m+ p=[log, (47 -(m+1)+1)]

where - is the Euclidean division
When 7 is large, we observe that m ~ p, thus the whole expression is asymptotically
equal to @, as desired. See [19] for the %ﬁfzn contribution of the second-level

directory to space complexity.

6 Final Extraction and Benchmark

We extract the rank function from Sect. 5.1 using the OCaml library for bitstrings from
Sect. 4.2 and benchmark the result to check that its execution is constant-time.

6.1 Extraction of the Verified rank Function

Concretely, extraction from Coq is the matter of the command Extraction (see file
Extract.v [19]).

Extraction of Coq Lists To replace inductive types and functions with custom OCaml
code, we provide the following hints:

Extract Inductive bits =>

”Pbits.bits” ["Pbits.bseq”] "Pbits.bmatch”.
Extract Inlined Constant bnil => ”Pbits.bnil”.
Extract Inlined Constant bsize => ”Pbits.bsize”.
Extract Inlined Constant bnth => ”Pbits.bnth”.
Extract Inlined Constant bappend => ”Pbits.bappend”.

Atline 1, we replace the Coq inductive type bits with the OCaml type Pbits.bits de-
fined in OCaml. Pbits.bseq and Pbits.bmatch are specified to replace the construc-
tor and pattern-matching expression which converts list of booleans to Pbits.bits and
vice versa. Pbits.bseq and Pbits.bmatch are defined but our application doesn’t use
them to avoid memory-inefficient list of booleans.

From line 3, the constant and functions bnil, bsize, bnth, etc. from Sect. 4.1 are
replaced by Pbits.bnil, Pbits.bsize, Pbits.bnth etc. to be explained in Sect. 4.2.

Extraction of the rank Algorithm Because we used abstractions in Coq, we must be
careful about inlining at extraction-time to obtain OCaml code as efficient as possible.
In particular, we need to ensure that the function parameters we have introduced for
modularity using Coq’s Sections are inlined. Concretely, we inline most function calls

using the following Coq command: Extraction Inline emptyD1 pushD1 lookupD1 As
a result, rank_lookup looks like an hand-written program, prefix notations aside (see
appendix B for the extracted rank_lookup and rank_init functions). As for the func-
tion buildDir in rank_init, we obtain a tail-recursive OCaml function, like the one
we wrote in Coq, so that it should use constant-size stack independently of the input
bitstring.

Since we obtain almost hand-written code, we can expect ocamlopt to provide
us with all the usual optimizations. There are however specific issues due to Coq id-
iosyncrasies. For example, the pervasive usage of the successor function .+1 for natural
numbers is extracted to a call to the OCaml function Pervasives. succ that ocamlopt
luckily turns into an integer increment. (One can check which inlining ocamlopt has
performed by using ocamlopt -dclambda.) In contrast, anonymous function calls pro-
duced by extraction may be responsible for inefficiencies. For example, the mapping
from Coq nat to OCaml int is defined as follows (file ExtrOcamlNatInt.v from the Coq
standard library) :

Extract Inductive nat => int [”0” "Pervasives.succ”]
”(fun fO fS n -> if n=0 then fO () else fS (n-1))”.

It is responsible for calls of the form (fun fO fS n -> ...) (fun _ -> E1)
(fun jp -> E2) (see rank_init in appendix B) that ocamlopt unfortunately cannot
B-reduce.

6.2 Benchmarking of the Verified rank Function

25
7 07 _20- -
=4 2,15 - "
g 5 | E£1.0- "
Ll 0 - S o =05- —
0- 0.0-

0

500
input size[Mbit]

I
1000

500
input size[Mbit]

T
1000

Fig. 3. Performance of rank lookup Fig. 4. Performance of rank initialization

Fig. 3 shows the performance of a single lookup invocation for the rank function
by measuring the time taken by rank_lookup aux i for inputs up to 1000Mbit (recall
that the input string s is part of aux). We make measurements for 1000 values of the
input size n. For each n, we make 10 measures for i between 0 and n. The measurement
order is randomized (n and i are picked randomly).

Execution seems constant-time (0.83us on average) w.r.t. the input size. One can
observe that execution seems a bit faster for small inputs. We believe that this is the
effect of memory cache. One can also observe that the result is noisy. We believe that
this is because of memory cache with access patterns and some instructions, such as
IDIV (integer division), that use a variable number of clock cycles [9].

Fig. 4 shows the performance of initialization for the rank function by measuring
the time taken by rank_init for inputs up to 1000Mbit. We make measurements for
1000 values of the input size. As expected, the result seems linear. There are several
small gaps, for input size 537Mbit for example. This happens because the parameters
for Jacobson’s rank algorithm are changed at this point: sz, and k are changed from
30bit to 31bit, w1 is changed from 29bit to 30bit. As a result, the size of the first-level
directory decreases from 17.3Mbit to 16.8Mbit and the second-level directory, from
179Mbits to 174Mbits, leading to a shorter initialization time.

Benchmark Environment The operating system is Debian GNU/Linux 8.4 (Jessie)
amd64 and the CPU is the Intel Core i7-4510U CPU (2.00GHz, Haswell). The time
is measured using the clock_gettime function with the CLOCK_PROCESS_CPUTIME_ID
resolution set to 1ns. The rank implementation is extracted by Coq 8.5pl1 and compiled
to a native binary with ocamlopt version 4.02.3. C programs are compiled with gcc
4.9.2 with options -0 -march=native (-march=native is used to enable POPCNT
and LZCNT of recent Intel processors).

About OCaml’s Garbage Collector Gc.full_major and Gc.compact are invoked
before each measurement to mitigate the GC effect. Garbage collection does not oc-
cur during lookup measurements (major_collections and minor_collections in
Gc.stat are unchanged). During initialization measurements, the GC has a small im-
pact. Indeed, in Fig. 4, major garbage collection happens at most 226 times during
one initialization measurement. Moreover, using another experiment with gprof, we
checked that the time spent by the GC (with Gc. full_major and Gc.compact disabled)
during the rank_init benchmark accounts for less than 5%.

7 Discussion and Perspectives

About Complexity For the time being, we limited ourselves to benchmarking the ex-
tracted code for time-complexity. It would be more convincing to perform formal ver-
ification using a monadic approach (e.g., [15]). We have addressed the issue of space-
complexity in Sect. 5.3. In general, one may also wonder about the space-complexity of
intermediate data structures. In this paper, we obviously did not build any but this could
also be addressed by counting the number of cons cells using a monad.

About Extraction of Natural Numbers In this paper, there is no problem when we
extract Coq nat to OCaml int, despite the fact that nat has no upper-bound. OCaml
ints are (w — 1)-bit signed integers that can represent positive integers less than w2
(w is the number of bits in a machine word) [12]. However, the maximum number of
bits in an OCaml bytes is 2"~ % bits because one OCaml block may not contain
more than 219 words [12]. Since 2% < 2¥~2 for w = 32 and w = 64, an int
can always represent the number of bits in a bytes. For this reason, nat arguments of
functions such as bnth or intermediate values in the rank algorithm do not overflow
when turned into int. This can be ensured during formal verification by using a type
for fixed-size integers (such as int : nat -> Type in [1]) instead of natural numbers.

About Alignment The extracted code can be further optimized by insisting on having
the sizes (w1, w2 in this paper) of the integers in the directories to be multiples of 8. This

removes the need for masking an shifting when reading entries from the directories.
This can be enforced by modifying rank_default_param.

About the Correctness of OCaml Code The OCaml part of the library has not been
formally proved, but it has been extensively tested for functional correctness. We have
implemented a test suite for the OCaml bitstring library using OUnit [17]. Concretely,
we test functions for bits by comparison with list functions using random bitstrings.
We also test the extracted rank function by comparison with the rank function defined
in specification like style, i.e., count_mem b (drop i s). Since we plan to reuse this library
for other functions, it will endure even more testing. Formal verification of the OCaml
part would be interesting, but it seems difficult as of today, because we are relying on
unspecified features regarding optimization, Obj.magic, and C.

Our rank function is careful to use bitstrings in a linear way (i.e., it never adds bits
twice to the same bitstring), but the correctness of the OCaml bitstring library does not
rely on this fact. Whenever it detects repeated addition to a shared buffer, which can be
seen through a discrepancy between the used field of the bits_buffer and the len part
of the Bref, it copies the first len bits to a new buffer before adding the extra bits.

Formal verification of the Coq library may be used to further guarantee the time-
complexity properties of the OCaml library. For example, to achieve linear-time con-
struction of arrays with bappend (Sect. 4.2), bappend s s' must be called on s at most
once. The approach that we are currently exploring to ensure this property is to aug-
ment the rank function with an appropriate monad.

About Performance of the Extracted Implementation We have not yet undertaken
a thorough benchmark comparison with existing libraries for succinct data structures.
This is mostly because our purpose in this paper is first and foremost verification, but
also because the libraries we have checked so far do not seem to implement the same
rank algorithm, making comparison difficult. Nevertheless, we can already observe that
extracted OCaml code does not suffer from any significant performance loss compared
to existing libraries. For example, we have observed that the SDSL [16] rank function
for Hy-compressed vectors executes in about 0.1 ~ 1.8us depending on algorithm’s
parameters while our rank function executed in 0.83us (see Sect. 6.2). (To be fair, it
is likely that our rank function consumes more memory since Jacobson’s algorithm
does not compress its input.) We believe that this is an indication that our approach can
indeed deliver acceptable performance with the benefit of formal verification.

8 Conclusion

We discussed the verification of an OCaml implementation of the rank function for suc-
cinct data structures. We carried out formal verification in the Coq proof-assistant, from
which the implementation was automatically extracted. We assessed not only functional
correctness but also storage requirements, thus ensuring that data structures are indeed
succinct. To obtain efficient code, we developed a new OCaml library for bitstrings
whose interface match the Coq lists used in formal verification. To the best of our
knowledge, this is the first application of formal verification to succinct data structures.
We believe that the libraries developed for the purpose of our experiment are reusable:
the OCaml library for bitstrings of course, the array interface for directories (that are

used by other functions for succinct data structures), lemmas developed for the purpose
of formal specification of rank (as we saw in Sect. 5.2, verification of functional cor-
rectness can be carried out at the abstract level). We also discussed a number of issues
regarding extraction from Coq to OCaml: the interplay between inlining at extraction-
time and by the OCaml compiler, the soundness of code replacement at extraction-time,
etc. Based on the results of this paper, we are now tackling formal verification of rank’s
counterpart function select and plan to address more advanced algorithms.

Acknowledgments The authors are grateful to the anonymous reviewers for their helpful com-
ments. This work is partially supported by a JSPS Grant-in-Aid for Scientific Research (Project
Number: 15K12013).

References

1. R. Affeldt, N. Marti. An Approach to Formal Verification of Arithmetic Functions in Assem-
bly. In: ASIAN 2006. LNCS, vol. 4435, pp. 346-360. Springer, 2008.

2. R. Agarwal, A. Khandelwal, I. Stoica. Succinct: Enabling Queries on Compressed Data.
In: NSDI 2015. pp. 337-350. USENIX Association, 2015. Technical report available at
http://people.eecs.berkeley.edu/~rachit/succinct-techreport.pdf.

3. M. Armand, B. Grégoire, A. Spiwack, L. Théry. Extending Coq with Imperative Features and
Its Application to SAT Verification. In: ITP 2010. LNCS, vol. 6172, pp. 83-98. Springer,
2010.

4. D. Clark. Compact Pat Trees. Doctoral Dissertation. University of Waterloo, 1996.

5. The Coq Development Team. Reference Manual. Version 8.5. Available at http://coq.
inria.fr. INRIA (2004-2016).

6. Free Software Foundation. GCC 4.9.2 Manual. http://gcc.gnu.org/onlinedocs/gcc-4.
9.2/gcc. 2014.

7. G. Gonthier, A. Mahboubi, E. Tassi. A Small Scale Reflection Extension for the Coq system.
Version 16. Technical report RR-6455. INRIA, 2015.

8. Intel Advanced Vector Extensions Programming Reference. Jun. 2011.

9. Intel 64 and IA-32 Architectures Optimization Reference Manual. Sep. 2015.

10 Intel SSE4 Programming Reference. Apr. 2007.

. G. Jacobson. Succinct static data structures. Doctoral Dissertation. Carnegie Mellon Uni-
versity, 1988.

12. R. WM. Jones. A beginners guide to OCaml internals. https://rwmj.wordpress.com/
2009/08/04/ocaml-internals. 20009.

13. D. K. Kim, J. C. Na, J. E. Kim, K. Park. Efficient Implementation of Rank and Select
Functions for Succinct Representation. In: WEA 2005. LNCS, vol. 3503, pp. 315-327.
Springer, 2005.

14. G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin, D. Elkaduwe, K. En-
gelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, S. Winwood. seL4: formal verification
of an operating-system kernel. Commun. ACM 53(6):107-115. 2010.

15. T. Nipkow. Amortized Complexity Verified. In: ITP 2015. LNCS, vol. 9236, pp. 310-324.
Springer, 2015.

16. SDSL: Succinct Data Structure Library. https://github.com/simongog/sdsl-1lite.

17. OUnit: Unit test framework for OCaml. http://ounit.forge.ocamlcore.org/.

18. D. Okanohara. The world of fast character string analysis. (In Japanese.) Iwanami Shoten,
2012.

19. A. Tanaka, R. Affeldt, J. Garrigue. Formal Verification of the rank Function for Succinct
Data Structures. https://staff.aist.go. jp/tanaka-akira/succinct/index.html.

A OCaml Functions for Bitstrings

We equip the OCaml type bits (Sect. 4.2) with the same functions as the interface of
the Coq type bits (Sect. 4.1), but so as to achieve the time-complexities required by
Jacobson’s rank function. Indeed, most OCaml functions that we propose as a replace-
ment achieve the same tasks in constant-time instead of linear-time.

— bsize runs in constant-time because it just returns the first parameter of Bref.

— We implement bnth in constant-time easily by using OCaml functions for random-
access to bytes (Bytes.get, Bytes.set).

— bappend s s' runsin O(len’)-time for array construction. (len, len’ are the lengths
of s, s'.) More precisely, bappend works in O(len’)-time if it is possible to append
ler! bits in the bits_buffer of s (i.e., when len = used and used + len’ < 8 x
|datal). In this case, bappend copies the content of s' into the bits_buffer of s
by a destructive update and returns a newly allocated bits which length is len +
len'. (If the buffer is not long enough, i.e., used + len’ > 8 x |data|, it is doubled
but this doesn’t change the time complexity with amortization.) If the destructive
update is not possible, bappend copies the len bits of s into a newly allocated
bits_buffer. This copy needs linear-time and space w.r.t. len. However, as far as
the initialization phase of Jacobson’s rank algorithm is concerned, the two arrays
are constructed from left to right, so that bappend always runs in O(len’) with
amortization.

— bcount b i 1 srunsin O(I)-time in general (the Coq bcount requires an ad-
ditional O(i) because of the drop function, whereas in OCaml access to the ith
bit is direct). In fact, we have implemented bcount to use specialized assembly
instructions when possible. Concretely, bcount is implemented in C to use gcc’s
__builtin_popcountl [6], which counts the number of bits set in a 1long value.
For example, gcc generates POPCNT instructions for Intel SSE4.2 [10], so that we
can assume that __builtin_popcountl works in constant-time.

B Core Part of the Extracted OCaml Code

let rank_lookup aux@ i =
let b = aux@.query_bit in
let param@ = aux@.parameter in
let w1l = param@.wl_of in
let w2 = param@.w2_of in
let dirpair = aux@.directories in
let j2 = (/) i (Pervasives.succ param@.sz2p_of) in

let j3 = (mod) i (Pervasives.succ param@.sz2p_of) in
let j1 = (/) j2 (Pervasives.succ param@.kp_of) in
+)

((+) (let s = fst dirpair in Pbits.getword ((*) j1 wl) wl s)

(let s = snd dirpair in Pbits.getword ((*) j2 w2) w2 s))
(Pbits.bcount (Obj.magic b) ((*) j2 (Pervasives.succ param@.sz2p_of))
j3 aux@.input_bits)

let rank_init b s =
let param@ = rank_param (Pbits.bsize s) in
let w1 = param@.wl_of in
let w2 = param@.w2_of in
{ query_bit = b; input_bits = s; parameter = param@; directories =
(let rec buildDir j i n1 n2 d1 d2 =
let m =
Pbits.bcount (Obj.magic b)
(C *) ((-) param@.nn_of j) (Pervasives.succ param@.sz2p_of))
(Pervasives.succ param@.sz2p_of) s
in
((fun fO fS n -> if n=0 then fO () else fS (n-1))
(fun _ ->
let d1' = Pbits.bappend d1 (Pbits.bword wl ((+) nl1 n2)) in
let d2' = Pbits.bappend d2 (Pbits.bword w2 @) in
((fun fO fS n -> if n=0 then fO () else fS (n-1))
(fun _ -> (d1', d2'))
(fun jp -> buildDir jp param@.kp_of ((+) n1 n2) m d1' d2')
in
(fun ip ->
let d2' = Pbits.bappend d2 (Pbits.bword w2 n2) in
((fun fO fS n -> if n=0 then fO () else fS (n-1))
(fun _ -> (d1, d2'))
(fun jp -> buildDir jp ip n1 ((+) n2 m) d1 d2")
in
i)
in buildDir param@.nn_of @ @ @ Pbits.bnil Pbits.bnil) }

C Summary of the Implementation, Verification, Extraction, and
Testing of the rank Algorithm

Figure 5 summarizes the experiment described in this paper. Relevant parts of imple-
mentation files are indicated for browsing (see the code online [19]).

Proofs in Coq
Implementation

in Coq
(Implementation.v)

Implementation in
OCaml

Tests and bench-
mark in OCaml

bits lemmas

(Bits.v) ule in Array.v)

lemmas for word
array (WordArray.v)

lemmas about rank
instance (Sect. 5.3,
RankBlock.v)

Coq bits

lemmas for ab- rank specification
stract array (Mod- (Sect. 2.1, 2.1, Spec.v)

|

lemmas about generic
rank (Sect. 5.2,
RankBlock. V)

I

(Sect. 4.1) ~.. array with bits generic rank

. (Sect. 4.3)

(Sect. 3.1)

reﬁlace rank instance
* (Sect. 5.1)

\
N exﬂact
\

OCaIﬁl bit- extracted rank func-

strings (Sect. 4.2, — tion (Sect. 6.1,

4.2, pbits.ml) Implementation.ml)

| |

. test and bench-
test suite for OCaml
.. mark for extracted
bitstrings (Sect. 7,

eSS rank (Sect. 6.2,

test_pbits.ml, bm.ml)

Fig. 5. Dependency graph for the verification of Jacobson’s algorithm. Arrows A <— B read as “A

depends on B”

