

Safe Low-level Code Generation in Coq using Monomorphization and Monadification

Akira Tanaka, AIST Reynald Affeldt, AIST Jacques Garrigue, Nagoya University

2017-06-09 IPSJ SIGPRO 114

Goal: Translate Coq to C

- Coq C
- Fixpoint pow a k := match k with | 0 => 1| k'.+1 =>a * pow a k' end.

• Easy proof

- int pow(int a, int k) { switch (k) { case 0: return 1; default: { int k = k-1; return a * pow(a, k);
 - Efficient execution

Background

- C is used in low-level infrastructure programming language, OS, network server, embedded devices, IoT, succinct data structures
 - C is great

efficient, low-level features, reasonably portable, interoperability

C is dangerous

buffer overrun, integer overflow, etc.

- Robust infrastructure is important
 - <u>Absence of failures</u>: avoid undefined behavior
 - <u>Correctness</u>: correct program logic

Coq Proof-assistant

- Contains Gallina (an ML-like language)
- Large proof library
- Mature proof system
- Extensible with plugin written in OCaml
- Program extraction to OCaml, Haskell, Scheme and JSON

Idea: Prove in Coq, Execute in C

- Write a program in Gallina
- Verify the program in Coq
 - <u>Correctness</u>
 - <u>Absence of failures</u>
- Translate Gallina to C
- Enjoy verified, efficient and interoperable C program

Partiality in Coq and C

Different stance on program failures E.g., zero division, integer overflow, etc.

- Coq: All functions always succeed (All functions are total) E.g., 0 / 0 = 0n + 1 - 1 = n
- C: Various functions can fail (Functions can be partial)
 E.g., 0 / 0 is undefined (SIGFPE) n + 1 – 1 may overflow
- \rightarrow Need to bridge the gap

Current Practice Pollutes Source Program

How to Treat Partial Functions

- Proof of "<u>absence of failures</u>" Needs to modify the source program:
 - option type everywhere (or option monad) Need to propagate None \rightarrow Tedious programming

or

- partial function takes a proof of the precondition
 Certified programming needs dependent type
- Proof of <u>correctness</u> Difficult with the modified program
- Inefficient code extraction
 None-propagation causes overhead
 It is difficult to delete all dependent types

Our Solution: Automatic Monadification

- Separate proofs in Coq (Separation of concerns)
 - Proof of correctness with original source program
 E.g., tail recursive pow = naive pow
 - Proof of "absence of failures" with automatically generated monadic program
 E.g., no integer-overflow with int
- Efficient C code generation
 - Fully-customizable datatype implementation
 E.g., replace nat to int
 - No runtime overhead
 E.g., no dynamic integer-overflow detection

Our Translation Scheme

Two Coq plugins: Monomorphization and Monadification

We don't Use Coq Extraction

- Coq extraction doesn't support C Difficult to use low-level features
 - 64-bit integer
 - SSE, AVX, etc.
 - goto (for proper tail-recursion)
- Coq extraction inhibits type specific implementation Optimization according to type is difficult
 - Dependent type support
 - Lack of type annotation in MiniML (intermediate language of extraction) i.e., Type inference on MiniML required
- Modularity

Extraction is too big for us and difficult to deploy

- Useless features for us: dependent type support, proof erasure, etc.
- Coq itself must be built to use a modified extraction

Translation Steps

- Monomorphization
 - Remove polymorphism
 - The result is equal to the original (automatic formal proof)
- C code generation
 - Direct translation (no closures yet)
 - Fully-customizable data representation
- Monadification
 - For proof of "<u>absence of failures</u>" (program never fails)
 - Possible to use it for other proofs on computation
 E.g., complexity

Overview

Monomorphization

- C Code Generation
- Monadification
- Experiments
- **Trusted Base**
- Conclusion

polymorphic functions

Definition swap {A B}
(p : A * B) :=

Definition swap_bb p:=
 @swap bool bool p.

- monomorphic functions
- Definition _pair_bool_bool := @pair bool bool.

Definition _swap_bool_bool (p : bool * bool) := let (a, b) := p in _pair_bool_bool b a.

Definition _swap_bb p :=
_swap_bool_bool p.

Goal swap_bb = _swap_bb. Proof. reflexivity. Qed.

Monomorphization

- Specialize functions w.r.t. type args
- In addition, insert let-bindings (similar to A-normal form for code generation)
- The result is equal to the original, modulo the conversion rule of Coq
 - β -reduction: function application
 - ζ -reduction: remove let-binding
- "reflexivity" tactic checks term equality by the conversion rule

Target Language of Monomorphization

- ML-polymorphic subset of Gallina
- Full Gallina is impossible to monomorphize
 - polymorphic recursion
 - dependent type
- Possible to monomorphize ML program cf. MLton
- ML is powerful enough

Overview

Monomorphization

C Code Generation

Monadification

Experiments

Trusted Base

Conclusion

Highlight of C Code Generation

- Data representation is fully customizable
 - mapping nat to a fixed integer type is possible
- Proper tail recursion using "goto"

PAIST

C Code Generation Example: pow

```
    Generated C function

nat n2 pow(nat v88 a, nat v87 k)
 switch (sw nat(v87 k)) {
  case O nat: {
   nat v90 n = n0 O();
   return n1 S(v90 n); }
  case S nat: {
   nat v91 k =
     field0 S nat(v87 k);
   nat v92 n =
     n2 pow(v88 a, v91 k );
   return n2 muln(v88 a, v92 n);
 }
```

• Hand-written datatype implementation

#define nat uint64_t
#define n0_O() ((nat)0)
#define n1_S(n) ((n)+1)
#define sw_nat(n) (n)
#define case_O_nat case 0
#define case_S_nat default
#define field0_S_nat(n) ((n)-1)

#define n2_addn(a,b) ((a)+(b))
#define n2_subn(a,b) ((a)-(b))
#define n2_muln(a,b) ((a)*(b))
#define n2_divn(a,b) ((a)/(b))
#define n2_modn(a,b) ((a)%(b))

See the paper for details

Overview

Monomorphization

C Code Generation

Monadification

Experiments

Trusted Base

Conclusion

Monadification Absence of failures become provable

E.g., integer-overflow

- direct style
- Fixpoint pow a k := match k with | 0 => 1| k'.+1 =>a * pow a k' end.

monadic style

Fixpoint powM a k := match k with | 0 => SM 0| k'.+1 =>powM a k' >>= mulM a end.

Why Monadification?

Proof about computation E.g.,

- The program uses only nat values smaller than 2⁶⁴
- The index of array access is always less than the size
- The program invokes "cons" n times

Why Automatic Monadification?

- Hand-monadification is tedious
- Different proof needs different monads and monadic actions
 - "cons" constructor to count cons invocations
 - "S" constructor for integer overflow
- Need to monadify library, not only application

Configuration of Monadification Plugin

- Set the monadic triple Monadify Type M. Monadify Return f. Monadify Bind f.
- 2. Register monadic actions Monadify Action f => fM.
- 3. Monadify a function and its dependencies Monadification f.

Option Monad for Program Failures

Definition ret {A} (x : A) := Some x.
Definition bind {A} {B}

(x': option A) (f : A \rightarrow option B) := match x' with None => None

| Some x => f x

end.

Monadify Type option. Monadify Return @ret. Monadify Bind @bind. (* Notations for ">>=" and "return" *)

Integer Overflow Detection

Registration of actions to detect integer-overflow:

Definition check x :=
 if Nat.log2 x < 32 then Some x else None.
Definition SM a := check a.+1.
Definition mulM a b := check (a * b).
Monadify Action S => SM.
Monadify Action muln => mulM.

Concrete Example of Monadification

- direct style (source)
- Fixpoint pow a k := match k with | 0 => 1| k'.+1 =>a * pow a k' end.

 monadic style (generated)

Fixpoint powM a k := match k with | 0 => SM 0| k'.+1 =>powM a k' >>= mulM a end.

Proof of "No Integer-Overflow"

- In general, we want to prove that the "program never fails" under *condition*, i.e.: forall x, *condition* → fM x = Some (f x)
- E.g., proof for "no integer overflow in pow":

Theorem powM_ok : forall a b, Nat.log2 (pow a b) < 32 \rightarrow (powM a b) = Some (pow a b).

Monad for Complexity

(Another application of monadification)

- Counter monad: Definition counter_with A : Type := nat * A. Definition ret {A} (x : A) := (0, x). Definition bind {A} {B} (x ' : counter_with A) (f : A → counter_with B) := let (m, x) := x ' in let (n, y) := f x in (m+n, y).
- Count cons invocations: Definition consM {T} (hd : T) tl := (1, cons hd tl). Monadify Action cons => @consM.
- E.g., we proved that naive list reversal needs n(n+1)/2 invocations and tail-recursive list reversal needs only n

Idea of the Monadification Algorithm

- Insert fewer monads to ease the proof (it is better when fM is similar to f)
 - Best: $t_1 \rightarrow t_2 \rightarrow t_3$ (same as original)
 - Good: $t_1 \rightarrow t_2 \rightarrow M t_3$
 - Bad: M ($t_1 \rightarrow M (t_2 \rightarrow M t_3)$)
- For most C functions, one M is enough
 - functions have no effect before the last argument is given
- Our algorithm infers the number of args before the first effect ("*impure arity*")

Insert Monads using "Impure Arity"

• fM is the monadified function of f

$$\begin{array}{l} f\colon t_{1}\rightarrow \ldots \rightarrow t_{k} \rightarrow t_{k+1} \rightarrow \ldots \rightarrow t_{n} \\ fM \colon t_{1} \rightarrow \ldots \rightarrow t_{k} \rightarrow \\ M \ (t_{k+1} \rightarrow \ldots \rightarrow M \ (t_{n-1} \rightarrow M \ t_{n}) \ldots) \end{array}$$

- We call k as impure arity
- Our algorithm chooses ${\bf k}$ as big as possible to ease the proof
- Two concrete problems that require a bigger ${\bf k}$
 - Coq can reject definitions with k=0 (decreasing argument and type argument)
- See the paper for details

Overview

Monomorphization

C Code Generation

Monadification

Experiments

Trusted Base

Conclusion

Experiments

- 1. Monadification of an existing, realistic theory
 - seq.v: SSReflect's list theory
 - Tried to monadify 49 functions
 - 7 is pure, 36 succeeds and 6 couldn't (dependent type, higher order constructor)
- 2. rank function for succinct data structure
 - Using monadification, we proved (in addition to <u>correctness</u>):
 - <u>absence of failures</u>
 - complexity
 - We generated C code; it uses customized datatype implementations:
 - bitstring implementation
 - array of small integers

Overview

- Monomorphization
- C Code Generation
- Monadification
- Experiments

Trusted Base

Conclusion

Our Trusted Base Smaller than Coq's Extraction

- Our C code gen.
 - g_monomorph.ml4 30
 - monoutil.ml 136
 - genc.ml 696
- Less than 1000 lines
- Monomorphization is not counted since the result is formally provable

- Coq 8.6 extraction
 - g_extraction.ml4 152
 - common.ml 648
 - extract_env.ml 682
 - extraction.ml 1098
 - mlutil.ml 1524
 - modutil.ml 411
 - table.ml 921
 - ocaml.ml 773
- Over 6000 lines

Overview

Monomorphization

- C Code Generation
- Monadification

Experiments

Trusted Base

Conclusion

Summary

- We could generate verified, low-level C programs with a small trusted base
- Monomorphization
 - Remove polymorphism
 - The correctness is proved by the "reflexivity" tactic
- C code generation
 - Fully customizable data representation
 - Proper tail recursion using "goto"
- Monadification
 - New algorithm usable in Coq
 - Proof about computation: program failures, complexity

Future Work

- Release the plugins
- Datatype implementation generation
- More algorithms for succinct data structure select, wavelet tree, etc.
- Specialization w.r.t. non-type args (i.e., partial evaluation)
- Pluggable GC and closures
- Linear types

Extra Slides

Prove a Program Never Fail

Option monad

- Automatic monadification and proof
 - \rightarrow Needs plugin
- Write a program in monadic style with option monad (No program in direct style)
 - → Tedious programming Difficult to remove option monad at extraction (Runtime overhead)
 - functor and identity monad

 → modules are not expanded in OCaml extraction
 - section and identity monad

 → needs to inline all functions (Too much code duplication)

• Don't fail in C

#define n2_divn(a,b) ((b) == 0 ? 0 : (a)/(b)) Use GMP for integer overflow

- \rightarrow Runtime overhead
- Certified Programming (cf. CPDT)
 - → Very difficult proof
 Needs extraction (proof erasure)
 Need to decide uint64_t or GMP at beginning
- Deep embedding using template-coq
 → Difficult proof
- Return an unknown value, u, for failures
 - → wrong proof (let x := u in 0) = 0. (u – u) = 0 for u:nat. (if u then e else e) = e for u:bool. $\frac{39}{37}$

Details of C Code Generation

Monomorphization before C Code Generation Example

source program

```
Fixpoint buildDir2 b s sz2
c i D2 m2 :=
if c is cp.+1 then
let m := bcount b i sz2 s in
buildDir2 b s sz2
cp (i + sz2)
(pushD D2 m2) (m2 + m)
else
(D2, m2).
```

```
monomorphized program
Fixpoint buildDir2 b s sz2
  c i D2 m2 :=
match c with
| 0 => pair DArr nat D2 m2
| cp.+1 =>
 let m:= bcount b i sz2 s in
 let n := addn i sz2 in
 let d := pushD D2 m2 in
 let n0 := addn m2 m in
 buildDir2 b s sz2 cp n d n0
end.
```

AIST

C Code Generation Example

monomorphized program

```
Fixpoint _buildDir2 b s sz2
c i D2 m2 :=
```

match c with

```
| 0 =>_pair_DArr_nat D2 m2
| cp.+1 =>
```

```
let m:=_bcount b i sz2 s in
let n := addn i sz2 in
```

```
let d := pushD D2 m2 in
```

```
let n0 := addn m2 m in
```

_buildDir2 b s sz2 cp n d n0 end.

```
• C program
```

```
prod DArr nat n7 buildDir2(bool v10 b,
  bits v9 s, nat v8 sz2, nat v7 c,
  nat v6_i, DArr v5_D2, nat v4_m2)
{ n7 buildDir2;;
 switch (sw_nat(v7_c)) {
 case O nat:
  return n2_pair_DArr_nat(v5_D2,v4_m2);
 case S nat: {
   nat v12 cp = field0 S nat(v7 c);
   nat v13 m =
     n4_bcount(v10_b,v6_i,v8_sz2,v9_s);
   nat v14 n = n2 addn(v6 i, v8 sz2);
   DArr v15_d=n2_pushD(v5_D2,v4_m2);
   nat v16_n = n2_addn(v4_m2, v13_m);
   v7_c = v12_cp; v6_i = v14 n;
   v5D2 = v15d;v4m2 = v16n;
   goto n7_buildDir2;
}}}
```


- monomorphized type name is used as-is
- function name is prefixed with the arity _buildDir2 \rightarrow n7_buildDir2
- variable → variable
- let \rightarrow variable initialization
- application \rightarrow function call or goto for tail recursion
- match → switch

Data Type Implementation

- Data representation is fully customizable
- bool in Coq:
 Inductive bool : Set := true : bool | false : bool.
- bool implementation in C: #include <stdbool.h> #define n0_true() true #define n0_false() false #define sw_bool(b) (b) #define case_true_bool default #define case_false_bool case false

nat Implementation

- natural number in Coq: nat
 Inductive nat : Set := O : nat | S : nat → nat.
- nat implementation in C: #define nat uint64_t #define n0_O() ((nat)0) #define n1_S(n) ((n)+1) #define sw_nat(n) (n) #define case_O_nat case 0 #define case_S_nat default #define field0_S_nat(n) ((n)-1) #define n2_addn(a,b) ((a)+(b))
- Integer overflow on uint64_t doesn't occur if we prove it using monadification

match → switch

• Coq

Inductive I :=

 $| Ci : \dots \rightarrow tij \rightarrow \dots \rightarrow I$

. . .

match v with

```
...
| Ci ...xij... => e
```

end

• C switch (sw l(v)) { . . . case Ci I: { tij xij = field(i-1) I(v); /* code for ei */ }

Experiment Monadification of SSReflect's seq.v

Monadification of seq.v

- Monadify 49 functions: all, allpairs, behead, belast, cat, catrev, constant, count, drop, filter, find, flatten, foldl, foldr, has, head, incr_nth, index, iota, iter, last, map, mas k, mkseq, ncons, nilp, nth, ohead, pairmap, perm_eq, pmap, rem, reshape, rev, rot, rotr, scanl, seqn, set_nth, shape, size, subseq, sumn, take, undup, uniq, unzip1, unzip2 and zip.
- Monadic action: S and cons
- 7 is pure: behead, drop, head, last, nth, ohead and subseq
- 36 is successfully monadified
- 6 couldn't: constant, index, perm_eq, undup, uniq and seqn
 - seqn uses dependent type
 - others use higher order constructor (nat_eqType and seq_eqType also have same problem)

Experiment rank function for succinct data structure

rank Function

 "rank_b i s" counts the number of "b" in the first "i" bits of "s" (which length is "n")

Naive implementation needs O(i) time:
 Definition rank b i s := count_mem b (take i s).

rank for Succinct Data Structure

- "rank_init b s" precomputes the auxiliary data: o(n) size in O(n) time
- "rank_lookup aux i" compute rank: O(1) time
- Functional correctness proved Lemma RankCorrect b s i : i <= bsize s → rank_lookup (rank_init b s) i = rank b i s.
- It never fail if n < 2⁶⁴
 Lemma RankSuccess b s i :
 let n := bsize s in log2 n < 64 → i <= n →
 (rank_initM b s >>= fun aux => rank_lookupM aux i)
 = Some (rank_lookup (rank_init b s) i).
- We also proved the time complexity