
Safe Low-level Code Generation in Coq using
Monomorphization and Monadification

Akira Tanaka, AIST
Reynald Affeldt, AIST
Jacques Garrigue, Nagoya University

2017-06-09 IPSJ SIGPRO 114

2/37

Goal: Translate Coq to C
● Coq

Fixpoint pow a k :=
 match k with
 | 0 => 1
 | k'.+1 =>
 a * pow a k'
 end.

● Easy proof

● C

int pow(int a, int k) {
 switch (k) {
 case 0: return 1;
 default: {
 int k_ = k­1;
 return
 a * pow(a, k_);
}}}
● Efficient execution

3/37

Background
● C is used in low-level infrastructure

programming language, OS, network server, embedded devices,
IoT, succinct data structures

– C is great
efficient, low-level features, reasonably portable,
interoperability

– C is dangerous
buffer overrun, integer overflow, etc.

● Robust infrastructure is important

– Absence of failures: avoid undefined behavior
– Correctness: correct program logic

4/37

Coq Proof-assistant
● Contains Gallina (an ML-like language)
● Large proof library
● Mature proof system
● Extensible with plugin written in OCaml
● Program extraction to OCaml, Haskell,

Scheme and JSON

5/37

Idea: Prove in Coq, Execute in C
● Write a program in Gallina
● Verify the program in Coq

– Correctness

– Absence of failures

● Translate Gallina to C
● Enjoy verified, efficient and interoperable

C program

6/37

Partiality in Coq and C

Different stance on program failures
E.g., zero division, integer overflow, etc.

● Coq: All functions always succeed
(All functions are total)

E.g., 0 / 0 = 0
 n + 1 – 1 = n

● C: Various functions can fail
(Functions can be partial)

E.g., 0 / 0 is undefined (SIGFPE)
 n + 1 – 1 may overflow

 → Need to bridge the gap

7/37

Current Practice Pollutes Source Program
How to Treat Partial Functions

● Proof of "absence of failures"
Needs to modify the source program:

– option type everywhere (or option monad)
Need to propagate None Tedious programming→

– partial function takes a proof of the precondition
Certified programming needs dependent type

● Proof of correctness
Difficult with the modified program

● Inefficient code extraction
None-propagation causes overhead
It is difficult to delete all dependent types

or

8/37

Our Solution: Automatic Monadification

● Separate proofs in Coq
(Separation of concerns)

– Proof of correctness with original source program
E.g., tail recursive pow = naive pow

– Proof of "absence of failures" with automatically
generated monadic program
E.g., no integer-overflow with int

● Efficient C code generation
– Fully-customizable datatype implementation

E.g., replace nat to int

– No runtime overhead
E.g., no dynamic integer-overflow detection

9/37

Our Translation Scheme
Two Coq plugins: Monomorphization and Monadification

Hand-written
source
program
(Gallina)

Generated
program
(C)

Monomorphization C code generation

Monadification
Monadified
program
(Gallina)

Hand-written
"absence of failures"
proof (Gallina)

Proof check
by Coq

Monomorphization plugin

Monadification plugin

Equality provable
by "reflexivity" tactic

Proof check
by Coq

Hand-written
"correctness"
proof (Gallina)

Option monad

10/37

We don't Use Coq Extraction
● Coq extraction doesn't support C

Difficult to use low-level features

– 64-bit integer

– SSE, AVX, etc.

– goto (for proper tail-recursion)

● Coq extraction inhibits type specific implementation
Optimization according to type is difficult

– Dependent type support

– Lack of type annotation in MiniML (intermediate language of extraction)
i.e., Type inference on MiniML required

● Modularity
Extraction is too big for us and difficult to deploy

– Useless features for us: dependent type support, proof erasure, etc.

– Coq itself must be built to use a modified extraction

11/37

Translation Steps
● Monomorphization

– Remove polymorphism

– The result is equal to the original (automatic formal proof)

● C code generation
– Direct translation (no closures yet)

– Fully-customizable data representation

● Monadification
– For proof of "absence of failures" (program never fails)

– Possible to use it for other proofs on computation
E.g., complexity

12/37

Overview

Monomorphization
C Code Generation

Monadification

Experiments

Trusted Base

Conclusion

13/37

Monomorphization Example
● polymorphic functions

Definition swap {A B}
 (p : A * B) :=
let (a, b) := p in (b, a).

Definition swap_bb p:=
 @swap bool bool p.

● monomorphic functions

Definition _pair_bool_bool :=
 @pair bool bool.

Definition _swap_bool_bool
 (p : bool * bool) :=
 let (a, b) := p in
 _pair_bool_bool b a.

Definition _swap_bb p :=
 _swap_bool_bool p.

Goal swap_bb = _swap_bb. Proof. reflexivity. Qed.

14/37

Monomorphization
● Specialize functions w.r.t. type args
● In addition, insert let-bindings

(similar to A-normal form for code generation)

● The result is equal to the original,
modulo the conversion rule of Coq
– β-reduction: function application

– ζ-reduction: remove let-binding

● "reflexivity" tactic checks term equality by
the conversion rule

15/37

Target Language of Monomorphization

● ML-polymorphic subset of Gallina
● Full Gallina is impossible to monomorphize

– polymorphic recursion

– dependent type

● Possible to monomorphize ML program
cf. MLton

● ML is powerful enough

16/37

Overview

Monomorphization

C Code Generation
Monadification

Experiments

Trusted Base

Conclusion

17/37

Highlight of C Code Generation
● Data representation is fully customizable

– mapping nat to a fixed integer type is possible

● Proper tail recursion using "goto"

18/37

C Code Generation Example: pow
● Generated C function

nat n2_pow(nat v88_a, nat v87_k)
{
 switch (sw_nat(v87_k)) {
 case_O_nat: {
 nat v90_n = n0_O();
 return n1_S(v90_n); }
 case_S_nat: {
 nat v91_k_ =
 field0_S_nat(v87_k);
 nat v92_n =
 n2_pow(v88_a, v91_k_);
 return n2_muln(v88_a, v92_n);
 }
 }
}

● Hand-written datatype
implementation

#define nat uint64_t
#define n0_O() ((nat)0)
#define n1_S(n) ((n)+1)
#define sw_nat(n) (n)
#define case_O_nat case 0
#define case_S_nat default
#define field0_S_nat(n) ((n)­1)

#define n2_addn(a,b) ((a)+(b))
#define n2_subn(a,b) ((a)­(b))
#define n2_muln(a,b) ((a)*(b))
#define n2_divn(a,b) ((a)/(b))
#define n2_modn(a,b) ((a)%(b))

See the paper for details

19/37

Overview

Monomorphization

C Code Generation

Monadification
Experiments

Trusted Base

Conclusion

20/37

Monadification
Absence of failures become provable

● direct style

Fixpoint pow a k :=
 match k with
 | 0 => 1
 | k'.+1 =>
 a * pow a k'
 end.

● monadic style

Fixpoint powM a k :=
 match k with
 | 0 => SM 0
 | k'.+1 =>
 powM a k' >>=
 mulM a
 end.

E.g., integer-overflow

21/37

Why Monadification?

Proof about computation
E.g.,
● The program uses only nat values smaller

than 264

● The index of array access is always less
than the size

● The program invokes "cons" n times

22/37

Why Automatic Monadification?
● Hand-monadification is tedious
● Different proof needs different monads

and monadic actions
– "cons" constructor to count cons invocations

– "S" constructor for integer overflow

● Need to monadify library, not only
application

23/37

Configuration of Monadification Plugin

1. Set the monadic triple
Monadify Type M.
Monadify Return f.
Monadify Bind f.

2. Register monadic actions
Monadify Action f => fM.

3. Monadify a function and its dependencies
Monadification f.

24/37

Option Monad for Program Failures

Definition ret {A} (x : A) := Some x.
Definition bind {A} {B}
 (x' : option A) (f : A → option B) :=
 match x' with None => None
 | Some x => f x
 end.
Monadify Type option.
Monadify Return @ret.
Monadify Bind @bind.
(* Notations for ">>=" and "return" *)

25/37

Integer Overflow Detection

Registration of actions to detect
integer-overflow:

Definition check x :=
 if Nat.log2 x < 32 then Some x else None.
Definition SM a := check a.+1.
Definition mulM a b := check (a * b).
Monadify Action S => SM.
Monadify Action muln => mulM.

26/37

Concrete Example of Monadification

● direct style
(source)

Fixpoint pow a k :=
 match k with
 | 0 => 1
 | k'.+1 =>
 a * pow a k'
 end.

● monadic style
(generated)

Fixpoint powM a k :=
 match k with
 | 0 => SM 0
 | k'.+1 =>
 powM a k' >>=
 mulM a
 end.

27/37

Proof of "No Integer-Overflow"
● In general, we want to prove that the

"program never fails" under condition, i.e.:
forall x, condition → fM x = Some (f x)

● E.g., proof for "no integer overflow in pow":

Theorem powM_ok :
 forall a b, Nat.log2 (pow a b) < 32 →
 (powM a b) = Some (pow a b).

28/37

Monad for Complexity
(Another application of monadification)
● Counter monad:

Definition counter_with A : Type := nat * A.
Definition ret {A} (x : A) := (0, x).
Definition bind {A} {B}
 (x ' : counter_with A)
 (f : A →counter_with B) :=
 let (m, x) := x ' in let (n, y) := f x in
 (m+n, y).

● Count cons invocations:
Definition consM {T} (hd : T) tl := (1, cons hd tl).
Monadify Action cons => @consM.

● E.g., we proved that naive list reversal needs
n(n+1)/2 invocations and tail-recursive list reversal needs only n

29/37

Idea of the Monadification Algorithm

● Insert fewer monads to ease the proof
(it is better when fM is similar to f)
– Best: t1 → t2 → t3 (same as original)

– Good: t1 → t2 → M t3

– Bad: M (t1 → M (t2 → M t3))

● For most C functions, one M is enough
– functions have no effect before the last

argument is given

● Our algorithm infers the number of args
before the first effect ("impure arity")

30/37

Insert Monads using "Impure Arity"
● fM is the monadified function of f

f: t1 → ... → tk → tk+1 → ... → tn

fM : t1 → ... → tk →
 M (tk+1 → ... → M (tn-1 → M tn)...)

● We call k as impure arity
● Our algorithm chooses k as big as possible to ease the

proof
● Two concrete problems that require a bigger k

– Coq can reject definitions with k=0
(decreasing argument and type argument)

● See the paper for details

31/37

Overview

Monomorphization

C Code Generation

Monadification

Experiments
Trusted Base

Conclusion

32/37

Experiments
1. Monadification of an existing, realistic theory

– seq.v: SSReflect's list theory

– Tried to monadify 49 functions

– 7 is pure, 36 succeeds and 6 couldn't
(dependent type, higher order constructor)

2. rank function for succinct data structure
– Using monadification, we proved (in addition to correctness):

● absence of failures
● complexity

– We generated C code;
it uses customized datatype implementations:

● bitstring implementation
● array of small integers

33/37

Overview

Monomorphization

C Code Generation

Monadification

Experiments

Trusted Base
Conclusion

34/37

Our Trusted Base Smaller than Coq's Extraction

● Our C code gen.
– g_monomorph.ml4 30

– monoutil.ml 136

– genc.ml 696

● Less than 1000 lines
● Monomorphization is

not counted since
the result is formally
provable

● Coq 8.6 extraction
– g_extraction.ml4 152

– common.ml 648

– extract_env.ml 682

– extraction.ml 1098

– mlutil.ml 1524

– modutil.ml 411

– table.ml 921

– ocaml.ml 773

● Over 6000 lines

35/37

Overview

Monomorphization

C Code Generation

Monadification

Experiments

Trusted Base

Conclusion

36/37

Summary
● We could generate verified, low-level C programs

with a small trusted base
● Monomorphization

– Remove polymorphism

– The correctness is proved by
the "reflexivity" tactic

● C code generation
– Fully customizable data representation

– Proper tail recursion using "goto"

● Monadification
– New algorithm usable in Coq

– Proof about computation: program failures, complexity

C

Monadified

Monomorphization plugin

Monadification plugin
Souce

37/37

Future Work
● Release the plugins
● Datatype implementation generation
● More algorithms for succinct data structure

select, wavelet tree, etc.

● Specialization w.r.t. non-type args
(i.e., partial evaluation)

● Pluggable GC and closures
● Linear types

38/37

Extra Slides

39/37

Prove a Program Never Fail
● Option monad

– Automatic monadification and proof
 Needs plugin→

– Write a program in monadic style with option monad (No program in direct style)
Tedious programming→

 Difficult to remove option monad at extraction (Runtime overhead)
● functor and identity monad

modules are not expanded in OCaml extraction→
● section and identity monad

needs to inline all functions (Too much code duplication)→

● Don't fail in C
#define n2_divn(a,b) ((b) == 0 ? 0 : (a)/(b))
Use GMP for integer overflow

 Runtime overhead→
● Certified Programming (cf. CPDT)

 Very difficult proof→
 Needs extraction (proof erasure)
 Need to decide uint64_t or GMP at beginning

● Deep embedding using template-coq
 Difficult proof→

● Return an unknown value, u, for failures
 wrong proof→

 (let x := u in 0) = 0. (u – u) = 0 for u:nat. (if u then e else e) = e for u:bool.

40/37

Details of C Code Generation

41/37

Monomorphization before
C Code Generation Example
● source program

Fixpoint buildDir2 b s sz2
 c i D2 m2 :=
 if c is cp.+1 then
 let m := bcount b i sz2 s in
 buildDir2 b s sz2
 cp (i + sz2)
 (pushD D2 m2) (m2 + m)
 else
 (D2, m2).

● monomorphized program

Fixpoint _buildDir2 b s sz2
 c i D2 m2 :=
match c with
| 0 =>_pair_DArr_nat D2 m2
| cp.+1 =>
 let m:=_bcount b i sz2 s in
 let n := _addn i sz2 in
 let d := _pushD D2 m2 in
 let n0 := _addn m2 m in
 _buildDir2 b s sz2 cp n d n0
end.

42/37

C Code Generation Example
● monomorphized program

Fixpoint _buildDir2 b s sz2
 c i D2 m2 :=
match c with
| 0 =>_pair_DArr_nat D2 m2
| cp.+1 =>
 let m:=_bcount b i sz2 s in
 let n := _addn i sz2 in
 let d := _pushD D2 m2 in
 let n0 := _addn m2 m in
 _buildDir2 b s sz2 cp n d n0
end.

● C program

prod_DArr_nat n7_buildDir2(bool v10_b,
 bits v9_s, nat v8_sz2, nat v7_c,
 nat v6_i, DArr v5_D2, nat v4_m2)
{ n7_buildDir2:;
 switch (sw_nat(v7_c)) {
 case_O_nat:
 return n2_pair_DArr_nat(v5_D2,v4_m2);
 case_S_nat: {
 nat v12_cp = field0_S_nat(v7_c);
 nat v13_m =
 n4_bcount(v10_b,v6_i,v8_sz2,v9_s);
 nat v14_n = n2_addn(v6_i, v8_sz2);
 DArr v15_d=n2_pushD(v5_D2,v4_m2);
 nat v16_n = n2_addn(v4_m2, v13_m);
 v7_c = v12_cp;v6_i = v14_n;
 v5_D2 = v15_d;v4_m2 = v16_n;
 goto n7_buildDir2;
}}}

43/37

C Code Generation is Direct
● monomorphized type name is used as-is
● function name is prefixed with the arity

_buildDir2 n7_buildDir2→
● variable variable→
● let variable initialization→
● application function call→

or goto for tail recursion
● match switch→

44/37

Data Type Implementation
● Data representation is fully customizable
● bool in Coq:

Inductive bool : Set := true : bool | false : bool.
● bool implementation in C:

#include <stdbool.h>
#define n0_true() true
#define n0_false() false
#define sw_bool(b) (b)
#define case_true_bool default
#define case_false_bool case false

45/37

nat Implementation
● natural number in Coq: nat

Inductive nat : Set := O : nat | S : nat → nat.
● nat implementation in C:

#define nat uint64_t
#define n0_O() ((nat)0)
#define n1_S(n) ((n)+1)
#define sw_nat(n) (n)
#define case_O_nat case 0
#define case_S_nat default
#define field0_S_nat(n) ((n)­1)
#define n2_addn(a,b) ((a)+(b))

● Integer overflow on uint64_t doesn't occur
if we prove it using monadification

46/37

match switch→
● Coq

Inductive I :=
...
| Ci : ... → tij → ... → I
...

match v with
...
| Ci ...xij... => e
...
end

● C

switch (sw_I(v)) {
 ...
 case_Ci_I: {
 ...
 tij xij = field(i-1)_I(v);
 ...
 /* code for ei */
 }
 ...
}

47/37

Experiment
Monadification of SSReflect's seq.v

48/37

Monadification of seq.v
● Monadify 49 functions: all, allpairs, behead, belast, cat, catrev, constant,

count, drop, filter, find, flatten, foldl, foldr, has, head, incr_nth, index, iota, iter, last, map, mas
k, mkseq, ncons, nilp, nth, ohead, pairmap, perm_eq, pmap, rem, reshape, rev, rot, rotr, scanl,
seqn, set_nth, shape, size, subseq, sumn, take, undup, uniq, unzip1, unzip2 and zip.

● Monadic action: S and cons
● 7 is pure: behead, drop, head, last, nth, ohead and subseq

● 36 is successfully monadified
● 6 couldn't: constant, index, perm_eq, undup, uniq and seqn

– seqn uses dependent type

– others use higher order constructor
(nat_eqType and seq_eqType also have same problem)

49/37

Experiment
rank function for succinct data structure

50/37

rank Function

● "rankb i s" counts the number of "b" in the
first "i" bits of "s" (which length is "n")

● Naive implementation needs O(i) time:

Definition rank b i s := count_mem b (take i s).

i = 17 bit

Nine "1" bits

rank1 17 10000101101011101111101 = 9

n = 23 bit

51/37

rank for Succinct Data Structure
● "rank_init b s" precomputes the auxiliary data:

o(n) size in O(n) time
● "rank_lookup aux i" compute rank: O(1) time
● Functional correctness proved

Lemma RankCorrect b s i : i <= bsize s →
 rank_lookup (rank_init b s) i = rank b i s.

● It never fail if n < 264

Lemma RankSuccess b s i :
 let n := bsize s in log2 n < 64 → i <= n →
 (rank_initM b s >>= fun aux => rank_lookupM aux i)
 = Some (rank_lookup (rank_init b s) i).

● We also proved the time complexity

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21
	ページ 22
	ページ 23
	ページ 24
	ページ 25
	ページ 26
	ページ 27
	ページ 28
	ページ 29
	ページ 30
	ページ 31
	ページ 32
	ページ 33
	ページ 34
	ページ 35
	ページ 36
	ページ 37
	ページ 38
	ページ 39
	ページ 40
	ページ 41
	ページ 42
	ページ 43
	ページ 44
	ページ 45
	ページ 46
	ページ 47
	ページ 48
	ページ 49
	ページ 50
	ページ 51

