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Goal: Translate Coq to C
● Coq

Fixpoint pow a k :=
  match k with
  | 0 => 1
  | k'.+1 =>
      a * pow a k'
  end.

● Easy proof

● C

int pow(int a, int k) {
  switch (k) {
    case 0: return 1;
    default: {
      int k_ = k­1; 
      return
        a * pow(a, k_);
}}}
● Efficient execution
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Background
● C is used in low-level infrastructure

programming language, OS, network server, embedded devices,
IoT, succinct data structures

– C is great
efficient, low-level features, reasonably portable,
interoperability

– C is dangerous
buffer overrun, integer overflow, etc.

● Robust infrastructure is important

– Absence of failures: avoid undefined behavior
– Correctness: correct program logic
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Coq Proof-assistant
● Contains Gallina (an ML-like language)
● Large proof library
● Mature proof system
● Extensible with plugin written in OCaml
● Program extraction to OCaml, Haskell, 

Scheme and JSON
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Idea: Prove in Coq, Execute in C  
● Write a program in Gallina
● Verify the program in Coq

– Correctness

– Absence of failures

● Translate Gallina to C
● Enjoy verified, efficient and interoperable

C program
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Partiality in Coq and C

Different stance on program failures
E.g., zero division, integer overflow, etc.

● Coq: All functions always succeed
(All functions are total)

E.g., 0 / 0 = 0
        n + 1 – 1 = n

● C: Various functions can fail
(Functions can be partial)

E.g., 0 / 0 is undefined (SIGFPE)
        n + 1 – 1 may overflow

 → Need to bridge the gap
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Current Practice Pollutes Source Program
How to Treat Partial Functions

● Proof of "absence of failures"
Needs to modify the source program:

– option type everywhere (or option monad)
Need to propagate None  Tedious programming→

– partial function takes a proof of the precondition
Certified programming needs dependent type

● Proof of correctness
Difficult with the modified program

● Inefficient code extraction
None-propagation causes overhead
It is difficult to delete all dependent types

or



8/37

Our Solution: Automatic Monadification

● Separate proofs in Coq
(Separation of concerns)

– Proof of correctness with original source program
E.g., tail recursive pow = naive pow

– Proof of "absence of failures" with automatically 
generated monadic program
E.g., no integer-overflow with int

● Efficient C code generation
– Fully-customizable datatype implementation

E.g., replace nat to int

– No runtime overhead
E.g., no dynamic integer-overflow detection
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Our Translation Scheme
Two Coq plugins: Monomorphization and Monadification

Hand-written
source
program
(Gallina)

Generated
program
(C)

Monomorphization C code generation

Monadification
Monadified
program
(Gallina)

Hand-written
"absence of failures"
proof (Gallina)

Proof check
by Coq

Monomorphization plugin

Monadification plugin

Equality provable
by "reflexivity" tactic

Proof check
by Coq

Hand-written
"correctness"
proof (Gallina)

Option monad
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We don't Use Coq Extraction
● Coq extraction doesn't support C

Difficult to use low-level features

– 64-bit integer

– SSE, AVX, etc.

– goto (for proper tail-recursion) 

● Coq extraction inhibits type specific implementation
Optimization according to type is difficult

– Dependent type support

– Lack of type annotation in MiniML (intermediate language of extraction)
i.e., Type inference on MiniML required

● Modularity
Extraction is too big for us and difficult to deploy

– Useless features for us: dependent type support, proof erasure, etc.

– Coq itself must be built to use a modified extraction
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Translation Steps
● Monomorphization

– Remove polymorphism

– The result is equal to the original (automatic formal proof)

● C code generation
– Direct translation (no closures yet)

– Fully-customizable data representation

● Monadification
– For proof of "absence of failures" (program never fails)

– Possible to use it for other proofs on computation
E.g., complexity
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Overview

Monomorphization
C Code Generation

Monadification

Experiments

Trusted Base

Conclusion
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Monomorphization Example
● polymorphic functions

Definition swap {A B}
  (p : A * B) :=
let (a, b) := p in (b, a).

Definition swap_bb p:=
  @swap bool bool p.

● monomorphic functions

Definition _pair_bool_bool :=
  @pair bool bool.

Definition _swap_bool_bool
  (p : bool * bool) :=
  let (a, b) := p in
  _pair_bool_bool b a.

Definition _swap_bb p :=
  _swap_bool_bool p.

Goal swap_bb = _swap_bb. Proof. reflexivity. Qed.
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Monomorphization
● Specialize functions w.r.t. type args
● In addition, insert let-bindings

(similar to A-normal form for code generation)

● The result is equal to the original,
modulo the conversion rule of Coq
– β-reduction: function application

– ζ-reduction: remove let-binding

● "reflexivity" tactic checks term equality by 
the conversion rule
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Target Language of Monomorphization

● ML-polymorphic subset of Gallina
● Full Gallina is impossible to monomorphize

– polymorphic recursion

– dependent type

● Possible to monomorphize ML program
cf. MLton

● ML is powerful enough
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Overview

Monomorphization

C Code Generation
Monadification

Experiments

Trusted Base

Conclusion
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Highlight of C Code Generation
● Data representation is fully customizable

– mapping nat to a fixed integer type is possible

● Proper tail recursion using "goto"
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C Code Generation Example: pow
● Generated C function

nat n2_pow(nat v88_a, nat v87_k) 
{
  switch (sw_nat(v87_k)) {
    case_O_nat: {
      nat v90_n = n0_O();
      return n1_S(v90_n); }
    case_S_nat: {
      nat v91_k_ =
        field0_S_nat(v87_k);
      nat v92_n =
        n2_pow(v88_a, v91_k_);
      return n2_muln(v88_a, v92_n);
    }
  }
}

● Hand-written datatype
implementation

#define nat uint64_t
#define n0_O() ((nat)0)
#define n1_S(n) ((n)+1)
#define sw_nat(n) (n)
#define case_O_nat case 0
#define case_S_nat default
#define field0_S_nat(n) ((n)­1)

#define n2_addn(a,b) ((a)+(b))
#define n2_subn(a,b) ((a)­(b))
#define n2_muln(a,b) ((a)*(b))
#define n2_divn(a,b) ((a)/(b))
#define n2_modn(a,b) ((a)%(b))

See the paper for details
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Overview

Monomorphization

C Code Generation

Monadification
Experiments

Trusted Base

Conclusion
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Monadification
Absence of failures become provable

● direct style

Fixpoint pow a k :=
  match k with
  | 0 => 1
  | k'.+1 =>
      a * pow a k'
  end.

● monadic style

Fixpoint powM a k :=
  match k with
  | 0 => SM 0
  | k'.+1 =>
      powM a k' >>=
      mulM a
  end.

E.g., integer-overflow
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Why Monadification?

Proof about computation
E.g.,
● The program uses only nat values smaller

than 264

● The index of array access is always less 
than the size

● The program invokes "cons" n times
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Why Automatic Monadification?
● Hand-monadification is tedious
● Different proof needs different monads 

and monadic actions
– "cons" constructor to count cons invocations

– "S" constructor for integer overflow

● Need to monadify library, not only
application
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Configuration of Monadification Plugin

1. Set the monadic triple
Monadify Type M.
Monadify Return f.
Monadify Bind f.

2. Register monadic actions
Monadify Action f => fM.

3. Monadify a function and its dependencies
Monadification f.
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Option Monad for Program Failures

Definition ret {A} (x : A) := Some x.
Definition bind {A} {B}
    (x' : option A) (f : A → option B) :=
  match x' with None => None
                     | Some x => f x
  end.
Monadify Type option.
Monadify Return @ret.
Monadify Bind @bind.
(* Notations for ">>=" and "return" *) 



25/37

Integer Overflow Detection

Registration of actions to detect
integer-overflow:

Definition check x :=
  if Nat.log2 x < 32 then Some x else None.
Definition SM a := check a.+1.
Definition mulM a b := check (a * b).
Monadify Action S => SM.
Monadify Action muln => mulM.
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Concrete Example of Monadification

● direct style
(source)

Fixpoint pow a k :=
  match k with
  | 0 => 1
  | k'.+1 =>
      a * pow a k'
  end.

● monadic style
(generated)

Fixpoint powM a k :=
  match k with
  | 0 => SM 0
  | k'.+1 =>
      powM a k' >>=
      mulM a
  end.
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Proof of "No Integer-Overflow"
● In general, we want to prove that the 

"program never fails" under condition, i.e.:
forall x, condition → fM x = Some (f x)

● E.g., proof for "no integer overflow in pow":

Theorem powM_ok :
  forall a b, Nat.log2 (pow a b) < 32 →
  (powM a b) = Some (pow a b).
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Monad for Complexity
(Another application of monadification)
● Counter monad:

Definition counter_with A : Type := nat * A.
Definition ret {A} (x : A) := (0, x).
Definition bind {A} {B}
  (x ' : counter_with A)
  (f : A →counter_with B) :=
  let (m, x) := x ' in let (n, y) := f x in
  (m+n, y).

● Count cons invocations:
Definition consM {T} (hd : T) tl := (1, cons hd tl).
Monadify Action cons => @consM.

● E.g., we proved that naive list reversal needs
n(n+1)/2 invocations and tail-recursive list reversal needs only n
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Idea of the Monadification Algorithm

● Insert fewer monads to ease the proof
(it is better when fM is similar to f)
– Best: t1 → t2 → t3 (same as original)

– Good: t1 → t2 → M t3

– Bad: M (t1 → M (t2 → M t3))

● For most C functions, one M is enough
– functions have no effect before the last 

argument is given

● Our algorithm infers the number of args 
before the first effect ("impure arity")  
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Insert Monads using "Impure Arity"
● fM is the monadified function of f

f: t1 → ... → tk → tk+1 → ... → tn

fM : t1 → ... → tk →
  M (tk+1 → ... → M (tn-1 → M tn)...)

● We call k as impure arity
● Our algorithm chooses k as big as possible to ease the

proof
● Two concrete problems that require a bigger k

– Coq can reject definitions with k=0
(decreasing argument and type argument)

● See the paper for details
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Overview

Monomorphization

C Code Generation

Monadification

Experiments
Trusted Base

Conclusion
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Experiments
1. Monadification of an existing, realistic theory

– seq.v: SSReflect's list theory

– Tried to monadify 49 functions

– 7 is pure, 36 succeeds and 6 couldn't
(dependent type, higher order constructor)

2. rank function for succinct data structure
– Using monadification, we proved (in addition to correctness):

● absence of failures
● complexity

– We generated C code;
it uses customized datatype implementations:

● bitstring implementation
● array of small integers
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Overview

Monomorphization

C Code Generation

Monadification

Experiments

Trusted Base
Conclusion



34/37

Our Trusted Base Smaller than Coq's Extraction

● Our C code gen.
– g_monomorph.ml4 30

– monoutil.ml         136

– genc.ml             696

● Less than 1000 lines
● Monomorphization is 

not counted since 
the result is formally 
provable

● Coq 8.6 extraction
– g_extraction.ml4  152

– common.ml         648

– extract_env.ml    682

– extraction.ml   1098

– mlutil.ml            1524

– modutil.ml           411

– table.ml              921

– ocaml.ml             773

● Over 6000 lines
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Overview

Monomorphization

C Code Generation

Monadification

Experiments

Trusted Base

Conclusion
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Summary
● We could generate verified, low-level C programs

with a small trusted base
● Monomorphization

– Remove polymorphism

– The correctness is proved by
the "reflexivity" tactic

● C code generation
– Fully customizable data representation

– Proper tail recursion using "goto"

● Monadification
– New algorithm usable in Coq

– Proof about computation: program failures, complexity

C

Monadified

Monomorphization plugin

Monadification plugin
Souce
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Future Work
● Release the plugins
● Datatype implementation generation
● More algorithms for succinct data structure

select, wavelet tree, etc.

● Specialization w.r.t. non-type args
(i.e., partial evaluation)

● Pluggable GC and closures
● Linear types



38/37

Extra Slides
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Prove a Program Never Fail
● Option monad

– Automatic monadification and proof
 Needs plugin→

– Write a program in monadic style with option monad (No program in direct style)
Tedious programming→

    Difficult to remove option monad at extraction (Runtime overhead)
● functor and identity monad

modules are not expanded in OCaml extraction→
● section and identity monad

needs to inline all functions (Too much code duplication)→

● Don't fail in C
#define n2_divn(a,b) ((b) == 0 ? 0 : (a)/(b))
Use GMP for integer overflow

 Runtime overhead→
● Certified Programming (cf. CPDT)

 Very difficult proof→
    Needs extraction (proof erasure)
    Need to decide uint64_t or GMP at beginning

● Deep embedding using template-coq
 Difficult proof→

● Return an unknown value, u, for failures
 wrong proof→

    (let x := u in 0) = 0.  (u – u) = 0 for u:nat.  (if u then e else e) = e for u:bool.
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Details of C Code Generation
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Monomorphization before
C Code Generation Example
● source program

Fixpoint buildDir2 b s sz2
    c i D2 m2 :=
  if c is cp.+1 then
    let m := bcount b i sz2 s in
    buildDir2 b s sz2
      cp (i + sz2)
      (pushD D2 m2) (m2 + m)
  else
    (D2, m2).

● monomorphized program

Fixpoint _buildDir2 b s sz2
    c i D2 m2 :=
match c with
| 0 =>_pair_DArr_nat D2 m2
| cp.+1 =>
  let m:=_bcount b i sz2 s in
  let n := _addn i sz2 in
  let d := _pushD D2 m2 in
  let n0 := _addn m2 m in
  _buildDir2 b s sz2 cp n d n0
end.
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C Code Generation Example
● monomorphized program

Fixpoint _buildDir2 b s sz2
    c i D2 m2 :=
match c with
| 0 =>_pair_DArr_nat D2 m2
| cp.+1 =>
  let m:=_bcount b i sz2 s in
  let n := _addn i sz2 in
  let d := _pushD D2 m2 in
  let n0 := _addn m2 m in
  _buildDir2 b s sz2 cp n d n0
end.

● C program

prod_DArr_nat n7_buildDir2(bool v10_b,
    bits v9_s, nat v8_sz2, nat v7_c,
    nat v6_i, DArr v5_D2, nat v4_m2)
{ n7_buildDir2:;
  switch (sw_nat(v7_c)) {
   case_O_nat:
    return n2_pair_DArr_nat(v5_D2,v4_m2);
   case_S_nat: {
      nat v12_cp = field0_S_nat(v7_c);
      nat v13_m =
        n4_bcount(v10_b,v6_i,v8_sz2,v9_s);
      nat v14_n = n2_addn(v6_i, v8_sz2);
      DArr v15_d=n2_pushD(v5_D2,v4_m2);
      nat v16_n = n2_addn(v4_m2, v13_m);
      v7_c = v12_cp;v6_i = v14_n;
      v5_D2 = v15_d;v4_m2 = v16_n;
      goto n7_buildDir2;
}}}
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C Code Generation is Direct
● monomorphized type name is used as-is
● function name is prefixed with the arity

_buildDir2  n7_buildDir2→
● variable  variable→
● let  variable initialization→
● application  function call→

or goto for tail recursion
● match  switch→
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Data Type Implementation
● Data representation is fully customizable
● bool in Coq:

Inductive bool : Set := true : bool | false : bool.
● bool implementation in C:

#include <stdbool.h>
#define n0_true() true
#define n0_false() false
#define sw_bool(b) (b)
#define case_true_bool default
#define case_false_bool case false
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nat Implementation
● natural number in Coq: nat

Inductive nat : Set := O : nat | S : nat → nat.
● nat implementation in C:

#define nat uint64_t
#define n0_O() ((nat)0)
#define n1_S(n) ((n)+1)
#define sw_nat(n) (n)
#define case_O_nat case 0
#define case_S_nat default
#define field0_S_nat(n) ((n)­1)
#define n2_addn(a,b) ((a)+(b))

● Integer overflow on uint64_t doesn't occur
if we prove it using monadification
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match  switch→
● Coq

Inductive I :=
... 
| Ci : ... → tij → ... → I
...

match v with
...
| Ci ...xij... => e
...
end

● C

switch (sw_I(v)) {
  ...
  case_Ci_I: {
    ...
    tij xij = field(i-1)_I(v);
    ...
    /* code for ei */
  }
  ...
}
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Experiment
Monadification of SSReflect's seq.v
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Monadification of seq.v
● Monadify 49 functions: all, allpairs, behead, belast, cat, catrev, constant, 

count, drop, filter, find, flatten, foldl, foldr, has, head, incr_nth, index, iota, iter, last, map, mas
k, mkseq, ncons, nilp, nth, ohead, pairmap, perm_eq, pmap, rem, reshape, rev, rot, rotr, scanl, 
seqn, set_nth, shape, size, subseq, sumn, take, undup, uniq, unzip1, unzip2 and zip.

● Monadic action: S and cons
● 7 is pure: behead, drop, head, last, nth, ohead and subseq

● 36 is successfully monadified
● 6 couldn't: constant, index, perm_eq, undup, uniq and seqn

– seqn uses dependent type

– others use higher order constructor
(nat_eqType and seq_eqType also have same problem)
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Experiment
rank function for succinct data structure
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rank Function

● "rankb i s" counts the number of "b" in the 
first "i" bits of "s" (which length is "n")

● Naive implementation needs O(i) time:

Definition rank b i s := count_mem b (take i s).

i = 17 bit

Nine "1" bits

rank1 17 10000101101011101111101 = 9

n = 23 bit
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rank for Succinct Data Structure
● "rank_init b s" precomputes the auxiliary data:

o(n) size in O(n) time
● "rank_lookup aux i" compute rank: O(1) time
● Functional correctness proved

Lemma RankCorrect b s i : i <= bsize s →
  rank_lookup (rank_init b s) i = rank b i s.

● It never fail if n < 264

Lemma RankSuccess b s i :
  let n := bsize s in log2 n < 64 → i <= n →
  (rank_initM b s >>= fun aux => rank_lookupM aux i)
  = Some (rank_lookup (rank_init b s) i).

● We also proved the time complexity
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