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Purpose

We want to generate practical C programs from 
Coq
● Write a program in Gallina
● Verify the program using Coq
● Translate the program to C
● Execute the program efficiently

We are developing codegen plugin for Coq
● Redesign codegen to reduce trusted computing 

base



Short Story

● We want to generate practical C program including 
increasing loop, BFS (breadth first search), etc.
– Non-structural recursion (dependent type) is required to 

represent them in Gallina

– Proof elimination is required

● We want to verify code generation itself
– Currently code generator is implemented in OCaml entirely

– Rewriting a part of code generator in Gallina makes verification 
easier

– We need to represet Gallina term as AST for code generator 

– We designed AST which can represent non-structural recursion 



Translating Gallina to C

Translate
to AST

in OCaml
Gallina
term

C code

● Accessing Gallina term needs OCaml
● AST translation would be possible in Gallina

It makes verifying translation easier
(than OCaml)

● (Writing a C file needs OCaml)

Translation
in Gallina

Gallina
AST

Today's topic



Expected Translation

● Definition f a b c :=
  a + g b + c

● nat f(nat a,
    nat b, nat c) {
  nat t1 = g(b);
  nat t2 = addn(a,t1);
  nat t3 = addn(t2,c);
  return t3;
}



Efficient C program generation

● Inductive types is fully customizable in C
– nat type in C is implemented by hand

typedef uint64_t nat;
#definie addn(a,b) ((a)+(b))

● Polymorphic function is monomorphized
● Tail-recursion is translated to goto



Efficient (Normal) C Program

● Strict evaluation (Not lazy evaluation)
● Primitives types

Ex. uint64_t (No tag bit)
● Primitive operators

Ex. +, __builtin_popcount
(No function call overhead for them) 

● Normal calling convention supported by CPU and 
standard ABI
(No trick for general tail call without stack consumption)

● Loop if possible (Not recursion by default)
● Avoid heap allocation if possible (Not heap by default)



Our Main Idea

● There is a Gallina subset close to
a C subset powerful enough

 Direct mapping from Gallina to C →
without overhead is possible

● Several translation phases are convertible
(A-normal form and monomorphization)

 Convertible phases can be verified →
easily (single reflexivity tactic proof)



Expected Translation

● Definition f a b c :=
  a + g b + c

● Definition _f a b c :=
  let t1 := g b in
  let t2 := addn a t1 in
  let t3 := addn t2 c in
  t3

● nat f(nat a,
    nat b, nat c) {
  nat t1 = g(b);
  nat t2 = addn(a,t1);
  nat t3 = addn(t2,c);
  return t3;
}

A-normal form

C code generation

f and _f is convertible



Requirement for
Gallina subset AST
● AST can represent a Gallina subset correspond to 

practical C program including increasing loop, BFS, etc
● Evaluation returns original term

eval term_AST = term
● Monadic evaluation function implementable

This is required for verification of uint64_t 
implementation of nat
evalM term_AST = Some term

● Proof elimination implementable
● C code generation implementable



Translation Structure

Gallina
(polymorphic)

Gallina
(monomorphic,
A-normal form)

C

Convertible
Translation
● monomorphization
● A-normal form
● AST generation

Non-convertible
Translation
● Proof elimination
● C code generation

convertibility checkable by
reflexivity tactic

AST

eval

evalM

proof for
absence of failure



Structural Recursion is not Enough

● Decreasing loop can be implemented in Coq
for (i = n; 0 < i; i--) {}
Fixpoint f n := match n with 0 => ... | n'.+1 => f n' end

● Increasing loop is not possible
for (i = 0; i < n; i++) {}
Fixpoint f i n := if i < n then f i.+1 n else ...
(* Error: Cannot guess decreasing argument of fix. *)

● There are practical C code which doesn't correspond to 
structurally recursive Coq function:
– increasing loop

– queue of breadth first search (BFS) can shrink and grow

● Non-structural recursion is required



Non-structural Recursion in Coq

● Recursive function in Coq must be structural recursion
● Non-structural recursion is emulated by additional 

argument which is structurally decreasing and it's sort 
is Prop

● Typically, Acc type is used for the argument
● The additional argument is removed at extraction 

because it is Prop
● The additional argument depends on prior arguments

i.e. dependent type is required
● We need to represent dependent type in AST 



Example of Non-structural 
Recursion: Increasing Loop
● Argument i is increasing to n.
● Fixpoint upto (i n : nat) (acc : Acc lt (n - i)) : unit.

Proof.
  refine (
    (if i < n as b return (i < n) = b  unit then→
      fun (H : (i < n) = true) => upto i.+1 n _
    else
      fun (H : (i < n) = false) => tt) erefl).
  apply Acc_inv with (x:=n-i); first by [].
  apply/ltP.
  rewrite subnSK; last by [].
  by apply leqnn.
Defined.

decreasing argument



AST Supporting Non-structural Recursion



Terminals of AST Syntax

f : global function name

r : recursive function name

B : recursive function body name

h : proof function name

C : constructor

v : normal (non-dependent) variable

p : proof variable (can depend on normal variables)

D : decreasing proof argument initializer
     (typically "lt_wf v" for "Acc lt v")



AST of Expression

exp = v
      | app
      | letapp v p := app in exp
      | rapp
      | letrapp v := rapp in exp
      | letproof p := proof in exp
      | nmatch v with | C v* => exp | ... end
      | dmatch v with | C v* p => exp | ... end
      | letnmatch v := v with | C v* => exp | ... end
      | letdmatch v := v with | C v* p => exp | ... end

app = f v*   (* global function application *)

rapp = r v* [p] (* recursive function application. *)

proof = h v* p* (* lemma application *)

variable

application
with/without let

match
with/without let



AST of Program (not implemented yet)

program = def*

def= f v* := exp
      | f v* := fix r (r := B)+ [D]
      | B r+ v* := exp
      | B r+ v* p := exp

non-recursive function

recursive function

recursive function body



Semantics of Expression AST
Semantics of AST is defined as Gallina expression
● E[v] = v
● E[f v1...] = f v1...
● E[letapp v0 p = f v1 ... in e] =

let v0 := f v1... in let p : (v0 = f v1...) := erefl v0 in E[e]
● E[rapp v1... [p]] = r v1... [p]  
● E[letrapp v := r v1... [p] in e] = let v := r v1... [p] in E[e]
● E[letproof p := h v1... p1... in e] = let p := h v1... p1... in E[e] 
● E[nmatch v with | C1 v11... => e | ... end] =

match v with | C1 v11... => E[e] | ... end
● E[dmatch v with | C1 v11... p1 => e1 | ... end] =

match v as v' return v = v'  T with→
| C1 v11... => fun (p : (v = C1 v11..)) => E[e1] | ...
end (erefl v)

● E[letnmatch v1 := v2 with ... end in e] =
let v1 := E[nmatch v2 with ... end] in E[e]

● E[letdmatch v1 := v2 with ... end in e] =
let v1 := E[dmatch v2 with ... end] in E[e]



Trivial Except letapp and dmatch
Semantics of AST is trivial except letapp and dmatch:
● E[v] = v
● E[f v1...] = f v1...
● E[letapp v0 p = f v1 ... in e] =

let v0 := f v1... in let p : (v0 = f v1...) := erefl v0 in E[e]
● E[rapp v1... [p]] = r v1... [p]  
● E[letrapp v := r v1... [p] in e] = let v := r v1... [p] in E[e]
● E[letproof p := h v1... p1... in e] = let p := h v1... p1... in E[e] 
● E[nmatch v with | C1 v11... => e1 | ... end] =

match v with | C1 v11... => E[e1] | ... end
● E[dmatch v with | C1 v11... p1 => e1 | ... end] =

match v as v' return v = v'  T→  with
| C1 v11... => fun (p1 : (v = C1 v11..)) => E[e1] | ...
end (erefl v)

● E[letnmatch v1 := v2 with ... end in e] =
let v1 := E[nmatch v2 with ... end] in E[e]

● E[letdmatch v1 := v2 with ... end in e] =
let v1 := E[dmatch v2 with ... end] in E[e]



Technical Challenges for AST

● The index of GADT-style AST
 Five environments→

● No type-generic match expression in Gallina
 matcher function→

● Proof needs zeta-reduction
E[ ] Γ ⊢ let x := u in t ▷ t{x/u}

 letapp binds equality proof→
proof can use the equality instead of zeta-
reduction



GADT-style AST

● Usual GADT interpreter (typically explained in Haskell) 
uses expression type indexed by return type
I.e. Inductive exp : Set  Type→

● Variables needs another index for variable types (cf. 
CPDT)
I.e. Inductive exp : seq Set  Set  Type→ →

● Our AST uses five indexes for variables
– global environment

– lemma environment

– recursive function environment

– normal (non-dependent) environment

– proof environment



AST Indexed by Actual 
Dependent Type doesn't Work
● Naive GADT-style AST would be:

Inductive exp := Type  Type := ...→
index is actual expression type

● Dependent type makes AST traversal impossible 
● Consider a function with dependent type

fun (x y : nat) (H : x < y) => H
● The actual type of H is available for actual value of x and 

y which are not known until the function is called
● H_AST : exp (x < y)
● We need actual value of x and y before obtaining H_AST
● It is not possible for proof elimination 



AST Indexed by Type AST 
doesn't Work
● Gallina syntax doesn't distinguish type and 

expression:
  term ::= ...
  | let ident [binders][: term]:=term in term
  | ...

● GADT-style AST would be:
Inductive term := term  Type := ...→

● Of course, "term" is not usable as index 
because it is not defined yet

type expression



Split Non-dependent Variables 
and Dependent Variables
● Inductive exp (nT : nenvtype)

  (pT : penvtype nT) : Set  Type→
● nT is index for normal variables

(non-dependent type)
● pT is index for proof variables

(dependent type)
● proof type is a function from normal 

environment to Prop
● Actually, we need more indexes for variables



No Type-generic match in Gallina

● Number of constructors is fixed in match 
expression:
match v with
| C1 v11... => e1 | ... | Cn vn1... => en
end

● Evaluation needs type-generic match
E[nmatch v with | C1 v11... => e1 | ... end] =
match v with | C1 v11... => E[e1] | ... end

● How we implement eval for nmatch?



(Normal) Matcher Function

● We use matcher functions
– Matcher function is a function similar to recursor (such as nat_rect)

but only dispatch, doesn't recurse

– Embed matcher function in AST

– Evaluation function invokes matcher function  

● matcher function is defined for each inductive type:
Definition nat_nmatcher (Tr : Set) (v : nat)
  (branch_O : Tr) (branch_S : nat -> Tr) : Tr :=
match v with
| O => branch_O
| S n => branch_S n
end



Dependent Matcher Function

● Proof needs information about selected 
branch at match expression

● dmatch provides this information
● Definition nat_dmatcher (Tr : Set) (v : nat)

  (branch_O : v = O  Tr)→
  (branch_S : forall n, v = S n  Tr) : Tr :=→
match v as v’ return v = v’  Tr with→
| O => branch_O
| S n => branch_S n
end (erefl v).



Provide Equality Proof to zeta-
reduction 
● In AST, proof is build by lemma invocation
● exp = letproof p := proof in exp | ...

proof = h v* p* (* lemma application *)
● zeta-reduction of argument is not possible 

in a lemma



zeta-reduction Usable in Proof
● Argument i is increasing to n.
● Fixpoint upto (i n : nat) (acc : Acc lt (n - i)) : unit.

Proof.
  refine (
    (if i < n as b return (i < n) = b  unit then→
      fun (H : (i < n) = true) => let j := i.+1 in upto j n _
    else
      fun (H : (i < n) = false) => tt) erefl).
  apply Acc_inv with (x:=n-i); first by [].
  apply/ltP.
  rewrite subnSK; last by [].
  by apply leqnn.
Defined.

Bind j for A-normal form

j and i.+1 is convertible here



zeta-reduction Unusable in Lemma

● Lemma upto_lemma (i n : nat) (b : bool)
  (j : nat) (acc : Acc lt (n – i))
  (Hb : b = (i < n)) (Hm : b = true)
  (Hj : j = i.+1) : Acc lt (n – j).
Proof.

Defined.
● letapp provides equality proof

E[letapp v0 p = f v1 ... in e] =
let v0 := f v1... in
let p : (v0 = f v1...) := erefl v0 in E[e]

j and i.+1 is not convertible
We need Hj instead



Proof Usage in AST
● Proof bindings

– recursive function definition binds an (optional) proof argument  

– letapp binds p : v0 = f v1...

– dmatch binds p : v = Ci vi1...

– letproof binds p := h v1... p1...

● Proof occurrences
– letproof uses p1...

– rapp and letrapp uses an (optional) proof argument for recursive function 
application

● The decreasing proof argument of recursive application is 
built by lemma invocation (letproof) with given decreasing 
argument and proofs for variable definitions by letapp and 
dmatch



Example



Example of Non-structural 
Recursion: Increasing Loop
● Argument i is increasing to n.
● Fixpoint upto (i n : nat) (acc : Acc lt (n - i)) : unit.

Proof.
  refine (
    (if i < n as b return (i < n) = b  unit then→
      fun H => upto i.+1 n _
    else
      fun H => tt) erefl).
  apply Acc_inv with (x:=n-i); first by [].
  apply/ltP.
  rewrite subnSK; last by [].
  by apply leqnn.
Defined.



Split Definition
● Lemma upto_lemma (i n : nat) (b : bool) (j : nat) (acc : Acc lt (n – i))

  (Hb : b = (i < n)) (Hm : b = true) (Hj : j = i.+1) : Acc lt (n – j).
Proof. ... Defined.

● Definition upto_body (upto : forall (i n : nat) (acc : Acc lt (n - i)), unit)
    (i n : nat) (acc : Acc lt (n - i)) : unit :=
  let b := i < n in let Hb : b = (i < n) := erefl in
  (if b as b' return b = b' -> unit then
    fun Hm =>
      let j := i.+1 in let Hj : j = i.+1 := erefl in
      let acc' := upto_lemma i n b j acc Hb Hm Hj in
      upto j n acc'
  else
    fun Hm => tt) erefl.

● Fixpoint upto (i n : nat) (acc : Acc lt (n - i)) {struct acc} : unit :=
  upto_body upto i n acc.

● This definition is convertible to previous upto



AST for upto_body

● letapp b Hb := ltn i n in
dmatch b with
| true Hm =>
    letapp j Hj := S i in
    letproof acc' :=
      upto_lemma i n b j acc Hb Hm Hj in
    upto j n acc'
| false Hm =>
    tt
end

● Evaluation of this AST is convertible
with previous upto_body



Details of AST



Five Environments

● global environment
● lemma environment
● recursive function environment
● normal (non-dependent) environment
● proof environment



Global and local variables

● We have two kind of normal (non-
dependent) variables
– global constant, referenced by name (string)

– local variable, referenced using de Bruijn Index

● Inductive exp (gT : seq (string * gty))
  (nT : seq Set) : Set  Type→

● gty represents a type of global constant
● global constant can be a function

Definition gty : Type := seq Set * Set.



Dependent-typed AST

● We need dependent type for proof variables
● So, we need another index for proof 

variables which depends on normal variables
● Inductive exp gT nT (pT : seq (pty gT nT)) : 

Set  Type→
● (pty gT nT) represent a proof variable type
● pty gT nT is a function type which takes 

global environment and normal environment 
and returns a Prop type



Proof Type Depends on
Global Environment
● E[letapp v0 p = f v1 ... in e] =

let v0 := f v1... in
let p : (v0 = f v1...) := erefl
in E[e]

● "f" refers a global constant
● (v0 = f v1...) actually uses global 

environment as: v0 = glookup genv "f" v1...
● So, proof type must depends on global 

environment type



Lemma Environment

● We need another environment for lemmas 
● E[letproof p := h v1... p1... in e] =

let p := h v1... p1... in E[e]
● "h" refers a lemma
● We cannot embed lemma in AST

– Actual value of global constant is unknown in AST
For example, "S" can refer any function of nat  nat→

– So, lemma environment must be defined against for a 
specific global environment



Recursive Function Environment

● Recursive function is described as:
– def= ...

| f v* := fix r (r := B)+ [D]
| B r+ v* := exp
| B r+ v* p := exp

– exp = ... | rapp | letrapp v := rapp in exp

– rapp = r v* [p]

● "r" needs yet another environment
It is similar to global function but it can take a 
proof argument

● Global function cannot take proof arguments to 
avoid mutual reference between gT and pT



Limitation of letrapp, letnmatch 
and letdmatch
● letrapp, letnmatch and letdmatch doesn't bind equality proof as letapp
● Equality at letrapp depends on the recursive function

pty doesn't take recursive environment to avoid mutual reference 
between pty and rT
So, letrapp doesn't bind equality proof

● Equality at letnmatch and letdmatch depends on eval because nmatch 
and dmatch has subexpression
But pty doesn't take eval function
So, letnmatch and letdmatch doesn't bind equality proof

● I think this limitation is not a big problem for non-structural recursion
● Function of FunInd has a similar limitation that function is pure pattern-

matching tree
Pure pattern-matching tree doesn't need letnmatch and letdmatch



Expression Types
● Definition nenvtype : Type := seq Set.
● Definition gty : Type := nenvtype * Set.
● Definition genvtype : Type := seq (string * gty).
● Definition pty (gT : genvtype) (nT : nenvtype) : Type :=

  genviron gT -> nenviron nT -> Prop.
● Definition penvtype (gT : genvtype) (nT : nenvtype) : Type := seq (pty gT nT).
● Definition lty gT : Type := {nT:nenvtype & (penvtype gT nT * pty gT nT)%type}.
● Definition lenvtype (gT : genvtype) : Type := seq (string * lty gT).
● Definition rty gT : Type := {nT:nenvtype & option (pty gT nT)} * Set.
● Definition renvtype (gT : genvtype) : Type := seq (string * rty gT).
● Inductive exp (gT : genvtype)

  (lT : lenvtype gT) (rT : renvtype gT)
  (nT : nenvtype) (pT : penvtype gT nT) :
  Set -> Type := ...



Environment is Heterogenious List

● Fixpoint nenviron (nT : nenvtype) : Set :=
  match nT with
  | [::] => unit
  | T :: nT' => prod T (nenviron nT')
  end.

● nenviron [:: nat; bool] is (nat * (bool * tt))
● genviron, penviron, lenviron, renviron is 

similar



Verify AST and Import a Function 
into Global Environment
Note: This process will be automated with codegen plugin
● Definition GT1 := (* global constant types *)      (*Base global env*)
● Definition GENV1 : genviron GT1 := (* global constant environment *)
● Lemma upto_lemma ...             (*Split Definition*)
● Definition upto_body ...
● Fixpoint upto ...
● Definition LT2 : lenvtype GT1 := ("upto_lemma", ...) :: ... (*Extend lemma env*)
● Definition LENV2 : lenviron GT1 LT2 GENV1 := ... :: ...
● Definition upto_body_AST := ...            (*Define AST*)
● Definition upto_body' ... := ... (eval ... upto_body_AST). (*Verify AST*)
● Lemma upto_body_ok : upto_body = upto_body'. reflexivity. Qed. 
● Definition upto_without_acc (i n : nat) := upto i n (lt_wf (n - i)).
● Definition GT2 := ("upto", ...) :: GT1.         (*Extend global env*)
● Definition GENV2 : genviron GT2 := (upto_without_acc, GENV1).



Recursive Function Definition and
Termination Checker
● We cannot define a recursive function using AST due to limitation 

of Coq termination checker
– eval is too complex for Coq termination checker

Fail Fixpoint upto'' (i n : nat) (acc : Acc lt (n - i)) {struct acc} : unit :=
  upto_body' upto'' i n acc.
(* Recursive call to upto'' has not enough arguments. *)

● So, we imported the original function, not AST-based one
– Definition upto_without_acc (i n : nat) := upto i n (lt_wf (n – i)).

Definition GT2 := ("upto", ...) :: GT1.
Definition GENV2 : genviron GT2 := (upto_without_acc, GENV1).

● It is possible to import AST-based one if we reduce function body
– Definition upto_body'' (upto : forall (i n : nat), Acc lt (n - i) -> unit)

    (i n : nat) (acc : Acc lt (n - i)) : unit := Eval cbv in upto_body' upto i n acc.
Fixpoint upto'' (i n : nat) (acc : Acc lt (n - i)) {struct acc} : unit :=
  upto_body'' upto'' i n acc.
Goal upto = upto''. reflexivity. Qed.

● But it seems not so worth to do it



Future Work

● Automatic AST generation
● Implement monadic eval and try to verify failable primitives
● Implement and verify proof elimination

Proof eliminated AST should return same value
Needs a relation between nmatcher and dmatcher

● C code generation
Needs type names.  One more environment?

● Support a dmatch variant for v' = v instead of v = v'?
Coq's Program command (Russel) uses v' = v 

● Support higher order function?
Verification of proof elimination would be difficult
(It seems relation between before/after proof elimination 
violates positivity condition)



Summary

● Dependent-typed AST is defined
● This AST represent a Gallina subset which 

can support non-structural recursion
● Evaluation of this AST is convertible with 

original term
● This AST is designed as an intermediate 

representation for codegen
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