
Intrinsically Typed Reflection of
a Gallina Subset Supporting
Dependent Types for
Non-structural Recursion of Coq

Akira Tanaka

National Institute of Advanced Industrial Science and Technology (AIST)
2018-11-21

The 14th Theorem Proving and Provers meeting (TPP 2018)

Purpose

We want to generate practical C programs from
Coq
● Write a program in Gallina
● Verify the program using Coq
● Translate the program to C
● Execute the program efficiently

We are developing codegen plugin for Coq
● Redesign codegen to reduce trusted computing

base

Short Story

● We want to generate practical C program including
increasing loop, BFS (breadth first search), etc.
– Non-structural recursion (dependent type) is required to

represent them in Gallina

– Proof elimination is required

● We want to verify code generation itself
– Currently code generator is implemented in OCaml entirely

– Rewriting a part of code generator in Gallina makes verification
easier

– We need to represet Gallina term as AST for code generator

– We designed AST which can represent non-structural recursion

Translating Gallina to C

Translate
to AST

in OCaml
Gallina
term

C code

● Accessing Gallina term needs OCaml
● AST translation would be possible in Gallina

It makes verifying translation easier
(than OCaml)

● (Writing a C file needs OCaml)

Translation
in Gallina

Gallina
AST

Today's topic

Expected Translation

● Definition f a b c :=
 a + g b + c

● nat f(nat a,
 nat b, nat c) {
 nat t1 = g(b);
 nat t2 = addn(a,t1);
 nat t3 = addn(t2,c);
 return t3;
}

Efficient C program generation

● Inductive types is fully customizable in C
– nat type in C is implemented by hand

typedef uint64_t nat;
#definie addn(a,b) ((a)+(b))

● Polymorphic function is monomorphized
● Tail-recursion is translated to goto

Efficient (Normal) C Program

● Strict evaluation (Not lazy evaluation)
● Primitives types

Ex. uint64_t (No tag bit)
● Primitive operators

Ex. +, __builtin_popcount
(No function call overhead for them)

● Normal calling convention supported by CPU and
standard ABI
(No trick for general tail call without stack consumption)

● Loop if possible (Not recursion by default)
● Avoid heap allocation if possible (Not heap by default)

Our Main Idea

● There is a Gallina subset close to
a C subset powerful enough

 Direct mapping from Gallina to C →
without overhead is possible

● Several translation phases are convertible
(A-normal form and monomorphization)

 Convertible phases can be verified →
easily (single reflexivity tactic proof)

Expected Translation

● Definition f a b c :=
 a + g b + c

● Definition _f a b c :=
 let t1 := g b in
 let t2 := addn a t1 in
 let t3 := addn t2 c in
 t3

● nat f(nat a,
 nat b, nat c) {
 nat t1 = g(b);
 nat t2 = addn(a,t1);
 nat t3 = addn(t2,c);
 return t3;
}

A-normal form

C code generation

f and _f is convertible

Requirement for
Gallina subset AST
● AST can represent a Gallina subset correspond to

practical C program including increasing loop, BFS, etc
● Evaluation returns original term

eval term_AST = term
● Monadic evaluation function implementable

This is required for verification of uint64_t
implementation of nat
evalM term_AST = Some term

● Proof elimination implementable
● C code generation implementable

Translation Structure

Gallina
(polymorphic)

Gallina
(monomorphic,
A-normal form)

C

Convertible
Translation
● monomorphization
● A-normal form
● AST generation

Non-convertible
Translation
● Proof elimination
● C code generation

convertibility checkable by
reflexivity tactic

AST

eval

evalM

proof for
absence of failure

Structural Recursion is not Enough

● Decreasing loop can be implemented in Coq
for (i = n; 0 < i; i--) {}
Fixpoint f n := match n with 0 => ... | n'.+1 => f n' end

● Increasing loop is not possible
for (i = 0; i < n; i++) {}
Fixpoint f i n := if i < n then f i.+1 n else ...
(* Error: Cannot guess decreasing argument of fix. *)

● There are practical C code which doesn't correspond to
structurally recursive Coq function:
– increasing loop

– queue of breadth first search (BFS) can shrink and grow

● Non-structural recursion is required

Non-structural Recursion in Coq

● Recursive function in Coq must be structural recursion
● Non-structural recursion is emulated by additional

argument which is structurally decreasing and it's sort
is Prop

● Typically, Acc type is used for the argument
● The additional argument is removed at extraction

because it is Prop
● The additional argument depends on prior arguments

i.e. dependent type is required
● We need to represent dependent type in AST

Example of Non-structural
Recursion: Increasing Loop
● Argument i is increasing to n.
● Fixpoint upto (i n : nat) (acc : Acc lt (n - i)) : unit.

Proof.
 refine (
 (if i < n as b return (i < n) = b unit then→
 fun (H : (i < n) = true) => upto i.+1 n _
 else
 fun (H : (i < n) = false) => tt) erefl).
 apply Acc_inv with (x:=n-i); first by [].
 apply/ltP.
 rewrite subnSK; last by [].
 by apply leqnn.
Defined.

decreasing argument

AST Supporting Non-structural Recursion

Terminals of AST Syntax

f : global function name

r : recursive function name

B : recursive function body name

h : proof function name

C : constructor

v : normal (non-dependent) variable

p : proof variable (can depend on normal variables)

D : decreasing proof argument initializer
 (typically "lt_wf v" for "Acc lt v")

AST of Expression

exp = v
 | app
 | letapp v p := app in exp
 | rapp
 | letrapp v := rapp in exp
 | letproof p := proof in exp
 | nmatch v with | C v* => exp | ... end
 | dmatch v with | C v* p => exp | ... end
 | letnmatch v := v with | C v* => exp | ... end
 | letdmatch v := v with | C v* p => exp | ... end

app = f v* (* global function application *)

rapp = r v* [p] (* recursive function application. *)

proof = h v* p* (* lemma application *)

variable

application
with/without let

match
with/without let

AST of Program (not implemented yet)

program = def*

def= f v* := exp
 | f v* := fix r (r := B)+ [D]
 | B r+ v* := exp
 | B r+ v* p := exp

non-recursive function

recursive function

recursive function body

Semantics of Expression AST
Semantics of AST is defined as Gallina expression
● E[v] = v
● E[f v1...] = f v1...
● E[letapp v0 p = f v1 ... in e] =

let v0 := f v1... in let p : (v0 = f v1...) := erefl v0 in E[e]
● E[rapp v1... [p]] = r v1... [p]
● E[letrapp v := r v1... [p] in e] = let v := r v1... [p] in E[e]
● E[letproof p := h v1... p1... in e] = let p := h v1... p1... in E[e]
● E[nmatch v with | C1 v11... => e | ... end] =

match v with | C1 v11... => E[e] | ... end
● E[dmatch v with | C1 v11... p1 => e1 | ... end] =

match v as v' return v = v' T with→
| C1 v11... => fun (p : (v = C1 v11..)) => E[e1] | ...
end (erefl v)

● E[letnmatch v1 := v2 with ... end in e] =
let v1 := E[nmatch v2 with ... end] in E[e]

● E[letdmatch v1 := v2 with ... end in e] =
let v1 := E[dmatch v2 with ... end] in E[e]

Trivial Except letapp and dmatch
Semantics of AST is trivial except letapp and dmatch:
● E[v] = v
● E[f v1...] = f v1...
● E[letapp v0 p = f v1 ... in e] =

let v0 := f v1... in let p : (v0 = f v1...) := erefl v0 in E[e]
● E[rapp v1... [p]] = r v1... [p]
● E[letrapp v := r v1... [p] in e] = let v := r v1... [p] in E[e]
● E[letproof p := h v1... p1... in e] = let p := h v1... p1... in E[e]
● E[nmatch v with | C1 v11... => e1 | ... end] =

match v with | C1 v11... => E[e1] | ... end
● E[dmatch v with | C1 v11... p1 => e1 | ... end] =

match v as v' return v = v' T→ with
| C1 v11... => fun (p1 : (v = C1 v11..)) => E[e1] | ...
end (erefl v)

● E[letnmatch v1 := v2 with ... end in e] =
let v1 := E[nmatch v2 with ... end] in E[e]

● E[letdmatch v1 := v2 with ... end in e] =
let v1 := E[dmatch v2 with ... end] in E[e]

Technical Challenges for AST

● The index of GADT-style AST
 Five environments→

● No type-generic match expression in Gallina
 matcher function→

● Proof needs zeta-reduction
E[] Γ ⊢ let x := u in t ▷ t{x/u}

 letapp binds equality proof→
proof can use the equality instead of zeta-
reduction

GADT-style AST

● Usual GADT interpreter (typically explained in Haskell)
uses expression type indexed by return type
I.e. Inductive exp : Set Type→

● Variables needs another index for variable types (cf.
CPDT)
I.e. Inductive exp : seq Set Set Type→ →

● Our AST uses five indexes for variables
– global environment

– lemma environment

– recursive function environment

– normal (non-dependent) environment

– proof environment

AST Indexed by Actual
Dependent Type doesn't Work
● Naive GADT-style AST would be:

Inductive exp := Type Type := ...→
index is actual expression type

● Dependent type makes AST traversal impossible
● Consider a function with dependent type

fun (x y : nat) (H : x < y) => H
● The actual type of H is available for actual value of x and

y which are not known until the function is called
● H_AST : exp (x < y)
● We need actual value of x and y before obtaining H_AST
● It is not possible for proof elimination

AST Indexed by Type AST
doesn't Work
● Gallina syntax doesn't distinguish type and

expression:
 term ::= ...
 | let ident [binders][: term]:=term in term
 | ...

● GADT-style AST would be:
Inductive term := term Type := ...→

● Of course, "term" is not usable as index
because it is not defined yet

type expression

Split Non-dependent Variables
and Dependent Variables
● Inductive exp (nT : nenvtype)

 (pT : penvtype nT) : Set Type→
● nT is index for normal variables

(non-dependent type)
● pT is index for proof variables

(dependent type)
● proof type is a function from normal

environment to Prop
● Actually, we need more indexes for variables

No Type-generic match in Gallina

● Number of constructors is fixed in match
expression:
match v with
| C1 v11... => e1 | ... | Cn vn1... => en
end

● Evaluation needs type-generic match
E[nmatch v with | C1 v11... => e1 | ... end] =
match v with | C1 v11... => E[e1] | ... end

● How we implement eval for nmatch?

(Normal) Matcher Function

● We use matcher functions
– Matcher function is a function similar to recursor (such as nat_rect)

but only dispatch, doesn't recurse

– Embed matcher function in AST

– Evaluation function invokes matcher function

● matcher function is defined for each inductive type:
Definition nat_nmatcher (Tr : Set) (v : nat)
 (branch_O : Tr) (branch_S : nat -> Tr) : Tr :=
match v with
| O => branch_O
| S n => branch_S n
end

Dependent Matcher Function

● Proof needs information about selected
branch at match expression

● dmatch provides this information
● Definition nat_dmatcher (Tr : Set) (v : nat)

 (branch_O : v = O Tr)→
 (branch_S : forall n, v = S n Tr) : Tr :=→
match v as v’ return v = v’ Tr with→
| O => branch_O
| S n => branch_S n
end (erefl v).

Provide Equality Proof to zeta-
reduction
● In AST, proof is build by lemma invocation
● exp = letproof p := proof in exp | ...

proof = h v* p* (* lemma application *)
● zeta-reduction of argument is not possible

in a lemma

zeta-reduction Usable in Proof
● Argument i is increasing to n.
● Fixpoint upto (i n : nat) (acc : Acc lt (n - i)) : unit.

Proof.
 refine (
 (if i < n as b return (i < n) = b unit then→
 fun (H : (i < n) = true) => let j := i.+1 in upto j n _
 else
 fun (H : (i < n) = false) => tt) erefl).
 apply Acc_inv with (x:=n-i); first by [].
 apply/ltP.
 rewrite subnSK; last by [].
 by apply leqnn.
Defined.

Bind j for A-normal form

j and i.+1 is convertible here

zeta-reduction Unusable in Lemma

● Lemma upto_lemma (i n : nat) (b : bool)
 (j : nat) (acc : Acc lt (n – i))
 (Hb : b = (i < n)) (Hm : b = true)
 (Hj : j = i.+1) : Acc lt (n – j).
Proof.

Defined.
● letapp provides equality proof

E[letapp v0 p = f v1 ... in e] =
let v0 := f v1... in
let p : (v0 = f v1...) := erefl v0 in E[e]

j and i.+1 is not convertible
We need Hj instead

Proof Usage in AST
● Proof bindings

– recursive function definition binds an (optional) proof argument

– letapp binds p : v0 = f v1...

– dmatch binds p : v = Ci vi1...

– letproof binds p := h v1... p1...

● Proof occurrences
– letproof uses p1...

– rapp and letrapp uses an (optional) proof argument for recursive function
application

● The decreasing proof argument of recursive application is
built by lemma invocation (letproof) with given decreasing
argument and proofs for variable definitions by letapp and
dmatch

Example

Example of Non-structural
Recursion: Increasing Loop
● Argument i is increasing to n.
● Fixpoint upto (i n : nat) (acc : Acc lt (n - i)) : unit.

Proof.
 refine (
 (if i < n as b return (i < n) = b unit then→
 fun H => upto i.+1 n _
 else
 fun H => tt) erefl).
 apply Acc_inv with (x:=n-i); first by [].
 apply/ltP.
 rewrite subnSK; last by [].
 by apply leqnn.
Defined.

Split Definition
● Lemma upto_lemma (i n : nat) (b : bool) (j : nat) (acc : Acc lt (n – i))

 (Hb : b = (i < n)) (Hm : b = true) (Hj : j = i.+1) : Acc lt (n – j).
Proof. ... Defined.

● Definition upto_body (upto : forall (i n : nat) (acc : Acc lt (n - i)), unit)
 (i n : nat) (acc : Acc lt (n - i)) : unit :=
 let b := i < n in let Hb : b = (i < n) := erefl in
 (if b as b' return b = b' -> unit then
 fun Hm =>
 let j := i.+1 in let Hj : j = i.+1 := erefl in
 let acc' := upto_lemma i n b j acc Hb Hm Hj in
 upto j n acc'
 else
 fun Hm => tt) erefl.

● Fixpoint upto (i n : nat) (acc : Acc lt (n - i)) {struct acc} : unit :=
 upto_body upto i n acc.

● This definition is convertible to previous upto

AST for upto_body

● letapp b Hb := ltn i n in
dmatch b with
| true Hm =>
 letapp j Hj := S i in
 letproof acc' :=
 upto_lemma i n b j acc Hb Hm Hj in
 upto j n acc'
| false Hm =>
 tt
end

● Evaluation of this AST is convertible
with previous upto_body

Details of AST

Five Environments

● global environment
● lemma environment
● recursive function environment
● normal (non-dependent) environment
● proof environment

Global and local variables

● We have two kind of normal (non-
dependent) variables
– global constant, referenced by name (string)

– local variable, referenced using de Bruijn Index

● Inductive exp (gT : seq (string * gty))
 (nT : seq Set) : Set Type→

● gty represents a type of global constant
● global constant can be a function

Definition gty : Type := seq Set * Set.

Dependent-typed AST

● We need dependent type for proof variables
● So, we need another index for proof

variables which depends on normal variables
● Inductive exp gT nT (pT : seq (pty gT nT)) :

Set Type→
● (pty gT nT) represent a proof variable type
● pty gT nT is a function type which takes

global environment and normal environment
and returns a Prop type

Proof Type Depends on
Global Environment
● E[letapp v0 p = f v1 ... in e] =

let v0 := f v1... in
let p : (v0 = f v1...) := erefl
in E[e]

● "f" refers a global constant
● (v0 = f v1...) actually uses global

environment as: v0 = glookup genv "f" v1...
● So, proof type must depends on global

environment type

Lemma Environment

● We need another environment for lemmas
● E[letproof p := h v1... p1... in e] =

let p := h v1... p1... in E[e]
● "h" refers a lemma
● We cannot embed lemma in AST

– Actual value of global constant is unknown in AST
For example, "S" can refer any function of nat nat→

– So, lemma environment must be defined against for a
specific global environment

Recursive Function Environment

● Recursive function is described as:
– def= ...

| f v* := fix r (r := B)+ [D]
| B r+ v* := exp
| B r+ v* p := exp

– exp = ... | rapp | letrapp v := rapp in exp

– rapp = r v* [p]

● "r" needs yet another environment
It is similar to global function but it can take a
proof argument

● Global function cannot take proof arguments to
avoid mutual reference between gT and pT

Limitation of letrapp, letnmatch
and letdmatch
● letrapp, letnmatch and letdmatch doesn't bind equality proof as letapp
● Equality at letrapp depends on the recursive function

pty doesn't take recursive environment to avoid mutual reference
between pty and rT
So, letrapp doesn't bind equality proof

● Equality at letnmatch and letdmatch depends on eval because nmatch
and dmatch has subexpression
But pty doesn't take eval function
So, letnmatch and letdmatch doesn't bind equality proof

● I think this limitation is not a big problem for non-structural recursion
● Function of FunInd has a similar limitation that function is pure pattern-

matching tree
Pure pattern-matching tree doesn't need letnmatch and letdmatch

Expression Types
● Definition nenvtype : Type := seq Set.
● Definition gty : Type := nenvtype * Set.
● Definition genvtype : Type := seq (string * gty).
● Definition pty (gT : genvtype) (nT : nenvtype) : Type :=

 genviron gT -> nenviron nT -> Prop.
● Definition penvtype (gT : genvtype) (nT : nenvtype) : Type := seq (pty gT nT).
● Definition lty gT : Type := {nT:nenvtype & (penvtype gT nT * pty gT nT)%type}.
● Definition lenvtype (gT : genvtype) : Type := seq (string * lty gT).
● Definition rty gT : Type := {nT:nenvtype & option (pty gT nT)} * Set.
● Definition renvtype (gT : genvtype) : Type := seq (string * rty gT).
● Inductive exp (gT : genvtype)

 (lT : lenvtype gT) (rT : renvtype gT)
 (nT : nenvtype) (pT : penvtype gT nT) :
 Set -> Type := ...

Environment is Heterogenious List

● Fixpoint nenviron (nT : nenvtype) : Set :=
 match nT with
 | [::] => unit
 | T :: nT' => prod T (nenviron nT')
 end.

● nenviron [:: nat; bool] is (nat * (bool * tt))
● genviron, penviron, lenviron, renviron is

similar

Verify AST and Import a Function
into Global Environment
Note: This process will be automated with codegen plugin
● Definition GT1 := (* global constant types *) (*Base global env*)
● Definition GENV1 : genviron GT1 := (* global constant environment *)
● Lemma upto_lemma ... (*Split Definition*)
● Definition upto_body ...
● Fixpoint upto ...
● Definition LT2 : lenvtype GT1 := ("upto_lemma", ...) :: ... (*Extend lemma env*)
● Definition LENV2 : lenviron GT1 LT2 GENV1 := ... :: ...
● Definition upto_body_AST := ... (*Define AST*)
● Definition upto_body' ... := ... (eval ... upto_body_AST). (*Verify AST*)
● Lemma upto_body_ok : upto_body = upto_body'. reflexivity. Qed.
● Definition upto_without_acc (i n : nat) := upto i n (lt_wf (n - i)).
● Definition GT2 := ("upto", ...) :: GT1. (*Extend global env*)
● Definition GENV2 : genviron GT2 := (upto_without_acc, GENV1).

Recursive Function Definition and
Termination Checker
● We cannot define a recursive function using AST due to limitation

of Coq termination checker
– eval is too complex for Coq termination checker

Fail Fixpoint upto'' (i n : nat) (acc : Acc lt (n - i)) {struct acc} : unit :=
 upto_body' upto'' i n acc.
(* Recursive call to upto'' has not enough arguments. *)

● So, we imported the original function, not AST-based one
– Definition upto_without_acc (i n : nat) := upto i n (lt_wf (n – i)).

Definition GT2 := ("upto", ...) :: GT1.
Definition GENV2 : genviron GT2 := (upto_without_acc, GENV1).

● It is possible to import AST-based one if we reduce function body
– Definition upto_body'' (upto : forall (i n : nat), Acc lt (n - i) -> unit)

 (i n : nat) (acc : Acc lt (n - i)) : unit := Eval cbv in upto_body' upto i n acc.
Fixpoint upto'' (i n : nat) (acc : Acc lt (n - i)) {struct acc} : unit :=
 upto_body'' upto'' i n acc.
Goal upto = upto''. reflexivity. Qed.

● But it seems not so worth to do it

Future Work

● Automatic AST generation
● Implement monadic eval and try to verify failable primitives
● Implement and verify proof elimination

Proof eliminated AST should return same value
Needs a relation between nmatcher and dmatcher

● C code generation
Needs type names. One more environment?

● Support a dmatch variant for v' = v instead of v = v'?
Coq's Program command (Russel) uses v' = v

● Support higher order function?
Verification of proof elimination would be difficult
(It seems relation between before/after proof elimination
violates positivity condition)

Summary

● Dependent-typed AST is defined
● This AST represent a Gallina subset which

can support non-structural recursion
● Evaluation of this AST is convertible with

original term
● This AST is designed as an intermediate

representation for codegen

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21
	ページ 22
	ページ 23
	ページ 24
	ページ 25
	ページ 26
	ページ 27
	ページ 28
	ページ 29
	ページ 30
	ページ 31
	ページ 32
	ページ 33
	ページ 34
	ページ 35
	ページ 36
	ページ 37
	ページ 38
	ページ 39
	ページ 40
	ページ 41
	ページ 42
	ページ 43
	ページ 44
	ページ 45
	ページ 46
	ページ 47
	ページ 48
	ページ 49
	ページ 50

