
What is Domain Specific Language?

Tanaka Akira
@tanaka_akr
National Institute of Advanced Industrial Science and Technology (AIST)

RubyKaigi 2019
2019-04-19

DSL – Domain Specific Language
● DSL stands for domain specific language
● DSL is implemented in two ways:

– External DSL: individual language implementation
make, SQL, XSLT, etc.

– Internal DSL: implemented as a library in a host
language
rake, rspec, etc.

My question:
What's the difference of internal DSL and library?

The Question (Concrete Version)
● rake is considered a DSL
● But Rakefile is just a Ruby program
● Why rake is DSL?

The Question (Generalized Version)
● Internal DSL is just a library
● DSL description is just a program written in the

host language
● Why internal DSL is considered a LANGUAGE?

This Question is Important
● DSL empowers Ruby programmers
● Understanding what is DSL is important to

design a new DSL

My Answer:
DSL has its own semantics

DSL program is readable without Ruby semantics
This makes a program easier-to-read

External DSL is clear
● SQL is DSL for database
● XSLT is DSL for translating XML

They have own syntax and semantics

They are not general purpose language

So, they are DSL

Internal DSL is not clear
● Many ruby libraries are considered DSL

– rake is a DSL
– rspec is a DSL
– etc.

● Rakefile and foo_spec.rb is written in Ruby
● They are executed in Ruby semantics

Syntax + Semantics = Language
● Syntax is a subset of string
● Semantics maps programs to semantic space

String

Syntax of language A

Semantic space

Semantics of
language A

Reading a Program
● "reading a program" means

"following a semantics arrow"
● We need to learn the semantics to read programs

Syntax A

Semantic space

Semantics A

Two Languages
● Lang. A and B has different syntax and semantics
● Some programs, such as x, has same meaning,

Other programs, such as y, has different meaning

Syntax A
Semantic space

Semantics A

Syntax B Semantics B

x
y

Two Language Semantics Examples
● One program has same meaning in two

languages
● One program has different meaning in two

languages

One Program Has Same Meaning
 in Two Languages

● Ruby
– % ruby -e 'print "hello\n"'

hello

● Perl
– % perl -e 'print "hello\n"'

hello

● 'print "hello\n"' has same meaning in Ruby and Perl.

One Program Has Different Meaning
in Two Languages

● Ruby
– irb> 1 + 2 * 3

7

● Smalltalk:
– gst> 1 + 2 * 3

9
– Smalltalk's binary operators have no precedence and

always left-associative
1 + 2 * 3 is interpreted as (1 + 2) * 3

External DSL
● External DSL and Ruby are different languages
● Some programs, such as x, has same meaning,

Other programs, such as y, has different meaning

Ruby Syntax
Semantic space

Ruby Semantics

DSL Syntax DSL Semantics

x
y

Internal DSL
● Internal DSL Syntax is subset of host language
● However, it has own semantics and

some programs can have different meaning

Ruby Syntax
Semantic space

Ruby Semantics

DSL Syntax
DSL Semantics

x
y

Internal DSL has Different Semantics?
● rspec provides English-like language for BDD
● Ruby semantics and English semantics can differ

Ruby Syntax
Semantic space

Ruby Semantics

rspec Syntax rspec (English)
Semantics

x
y

rubyspec (mspec) Example
● "should" method is implemented with "should" meaning in English

● spec/ruby/language/and_spec.rb:
it "evaluates to the last condition if all are true" do
 ("yes" && 1).should == 1
 (1 && "yes").should == "yes"
end

Ruby Syntax
Semantic space

Ruby Semantics

mspec Syntax English
Semantics

x
y

Ruby and English
English is used everywhere in Ruby (not only DSL)
● class and method names

matz rejects proposals until the name is appropriately
means a feature

● English.rb
alias $ERROR_INFO $!

● rspec

These make Ruby programs easier-to-read for English user

Internal DSL
● Internal DSL makes programs easier-to-read for

domain-knowledgeable people who knows
domain semantics

● Easier-to-read doesn't mean easier-to-write
Programmers should make both meaning same
I.e. Programmers must know both languages
(DSL and host language)

How to Design Good DSL

DSL Design Principle
● Respect domain convention

This makes DSL description easier for domain-
knowledgeable people

● Reduce boilerplate
– Preamble/Postamble
– Frequent snippet

● Hide non-domain issue
memory-management, etc.

Several DSL Examples
● rake: DSL for build process
● erb: DSL for templates
● shell.rb: DSL for Unix-shell

Build Process
● There are many build tools using dependencies

make, rake, cmake, SCons, Ant, ...
● build process = dependencies + actions

a.c b.c

a.o b.o

com

gcc -c b.cgcc -c a.c

gcc -o com a.o b.o

make
● Makefile:

a.o: a.c
 gcc -c a.c
b.o: b.c
 gcc -c b.c
com: a.o b.o
 gcc -o com a.o b.o

a.c b.c

a.o b.o

com

gcc -c b.cgcc -c a.c

gcc -o com a.o b.o

● Graphical Structure

"make" is a famous build tool
Makefile represents the graphical structure succinctly

rake
● Rakefile:

file "a.o" => "a.c" do
 sh "gcc -c a.c" end
file "b.o" => "b.c" do
 sh "gcc -c b.c" end
file "com" => ["a.o", "b.o"] do
 sh "gcc -o com a.o b.o" end

a.c b.c

a.o b.o

com

gcc -c b.cgcc -c a.c

gcc -o com a.o b.o

● Graphical Structure

"rake" is build tool written in Ruby
Rakefile is similar to Makefile
Rakefile is bit more verbose than Makefile

rake without DSL
● rake can be used without DSL
● Build script:

require 'rake'
Rake.application = Rake::Application.new
Rake.application.init("rake", ARGV)
Rake::FileTask.define_task("a.o" => "a.c") do system("gcc -c a.c") end
Rake::FileTask.define_task("b.o" => "b.c") do system("gcc -c b.c") end
Rake::FileTask.define_task("com" => ["a.o", "b.o"]) do system("gcc -o com a.o b.o") end
Rake.application.top_level

● rake without DSL is not the supposed way to use rake
"system" is used because no easy way to invoke "sh"

● The build script is much verbose than Rakefile

Thought Experiment:
rake without DSL Improved

● Build script:
require 'rake'
r = Rake.new(ARGV)
r.define_file_task("a.o" => "a.c") do r.sh("gcc -c a.c") end
r.define_file_task("b.o" => "b.c") do r.sh("gcc -c b.c") end
r.define_file_task("com" => ["a.o", "b.o"]) do
 r.sh("gcc -o com a.o b.o") end
r.run

● It still verbose than Rakefile

DSL Design in Rake
● Respect domain convention

– Describe build graph using pair: target => dependencies
– The arrow is inverse with build direction, unfortunately

● Reduce boilerplate
– Preamble: require 'rake'; r = Rake.new

Postamble: r.run
– Frequent snippet

"file" is shorter than "r.define_file_task"
"sh" is shorter than "r.sh"

DSL Implementation of Rake
● lib/rake/dsl_definition.rb

This filename is definite reason that Rake is DSL
● Tricks for DSL

– global methods
"file" and "sh" is defined to "main" object

– singleton pattern (global variable)
The state is maintained at Rake.application

– dedicated command, rake
It makes preamble/postamble implicit

ERB: template engine
● ERB source:

foo
<% 3.times do |i|
%>bar<% end %>
baz

● result:
foo
barbarbar
baz

Template Engine can be considered as
DSL for text generation

Text Generation with/without
Template Engine

with ERB:
● foo

<% 3.times do |i|
%>bar<% end %>
baz

without ERB:
● s = +""

s << "foo\n".freeze
3.times do |i|
 s << "bar".freeze end
s << "\nbaz\n".freeze
s

DSL Design in ERB
● Respect domain convention

– Use <% ... %> as SGML Processing Instruction and PHP

● Reduce boilerplate
– Preamble: s = +""

Postamble: s
– Frequent snippet

● string concatenations: s <<
● quotes and escapes: "...\n"

● Hide non-domain issue
– Destructive string concatenation (<<) is faster

than non-destructive concatenation (+)
– Avoid string allocations using .freeze

shell.rb: Shell-like Tool in Ruby
● Bourne shell:

 cat /etc/hosts | grep localhost > /tmp/foo
 head -1 /tmp/foo

● shell.rb:
irb> require 'shell'
irb> Shell.new.transact {
irb> cat("/etc/hosts") | system("grep", "localhost") > "/tmp/foo"
irb> system("head", "-1", "/tmp/foo")
irb> }
shell(#<Th:0x000055da32f97178 run>): /bin/grep localhost
shell(#<Th:0x000055da32f97178 run>): /bin/head -1 /tmp/foo
=> 127.0.0.1 localhost

shell.rb without Shell#transact
● shell.rb with transact:

Shell.new.transact {
 cat("/etc/hosts") |
 system("grep", "localhost") >
 "foo"
 system("head", "-1", "foo")
}

● shell.rb without transact
s = Shell.new
s.cat("/etc/hosts") |
s.system("grep", "localhost") >
 "/tmp/foo"
s.system("head", "-1", "foo")

transact method replaces self in the block to
avoid frequent "s."
It uses instance_eval

DSL Design in shell.rb
● Respect domain convention

– Use "|" for pipe, ">" for redirection
– cat method for cat command

● Reduce boilerplate
– Frequent snippet

● "cat" method instead of system("cat", ...)
def_system_command provides a way to define such
methods

● "s." is removed using instance_eval

Internal DSL
or

External DSL

Advantage of Internal DSL

Ruby and DSL can be mixed
● Ruby in DSL

– Rake actions can be written in Ruby

● DSL in Ruby
– generate Rake rules in Ruby loop

Disadvantage of Internal DSL
● Ruby and DSL is mixed

– DSL description is unusable except execution
● make -n show actions

rake -n doesn't show actions

● Tends to difficult to debug
– DSL description: debugging at Ruby level, not DSL level
– DSL implementation: dirty tricks makes debugging harder

● Tends to reach Ruby's limitation
– The limitation may be changed by Ruby versions

Internal DSL
or

Library

Between DSL and Library
● Many techniques to respect domain knowledge and reduce boilerplate
● Some techniques are cleaner and others are more dirty
● Clean techniques (Not so DSL-ish)

– Good names (English words)
– Appropriate use of operators

● Dirty techniques (DSL-ish)
– singleton pattern (global variable)
– instance_eval
– individual command
– TracePoint
– RubyVM::AbstractSyntaxTree

Readability of DSL
● Dirty techniques may improve readability

But it cannot improve endlessly
● Readability of DSL must saturate

More dirty techniques

readability

Writability of DSL
● Dirty techniques degrades writability

(maintainability, debug) of DSL descriptions and
implementations

● Disadvantage would be bigger endlessly

More dirty techniques

writability

Readability + Writability

More dirty techniques

readability

writability

readability+writability

● readability + writability would have maximum

maximum

Dirty Techniques are Discrete
● There are not so many dirty techniques

More dirty techniques

readability

writability

readability+writability

maximum

In this image,
only one dirty technique is enough

Summary
● Why internal DSL is a language?

– It has own semantics

● Why DSL is easier-to-read?
– Programmers (or domain experts) can use domain

knowledge (domain semantics)

● How to design good DSL?
– Moderate use of dirty techniques

	スライド 1
	スライド 2
	スライド 3
	スライド 4
	スライド 5
	スライド 6
	スライド 7
	スライド 8
	スライド 9
	スライド 10
	スライド 11
	スライド 12
	スライド 13
	スライド 14
	スライド 15
	スライド 16
	スライド 17
	スライド 18
	スライド 19
	スライド 20
	スライド 21
	スライド 22
	スライド 23
	スライド 24
	スライド 25
	スライド 26
	スライド 27
	スライド 28
	スライド 29
	スライド 30
	スライド 31
	スライド 32
	スライド 33
	スライド 34
	スライド 35
	スライド 36
	スライド 37
	スライド 38
	スライド 39
	スライド 40
	スライド 41
	スライド 42
	スライド 43
	スライド 44
	スライド 45
	スライド 46
	スライド 47

