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DSL – Domain Specific Language
● DSL stands for domain specific language
● DSL is implemented in two ways:

– External DSL: individual language implementation
make, SQL, XSLT, etc.

– Internal DSL: implemented as a library in a host 
language
rake, rspec, etc.



My question:
What's the difference of internal DSL and library?



The Question (Concrete Version)
● rake is considered a DSL
● But Rakefile is just a Ruby program 
● Why rake is DSL?



  

The Question (Generalized Version)
● Internal DSL is just a library
● DSL description is just a program written in the 

host language
● Why internal DSL is considered a LANGUAGE?



  

This Question is Important
● DSL empowers Ruby programmers
● Understanding what is DSL is important to 

design a new DSL



  

My Answer:
DSL has its own semantics

DSL program is readable without Ruby semantics
This makes a program easier-to-read



  

External DSL is clear
● SQL is DSL for database
● XSLT is DSL for translating XML

They have own syntax and semantics

They are not general purpose language

So, they are DSL



  

Internal DSL is not clear
● Many ruby libraries are considered DSL

– rake is a DSL
– rspec is a DSL
– etc.

● Rakefile and foo_spec.rb is written in Ruby
● They are executed in Ruby semantics



  

Syntax + Semantics = Language
● Syntax is a subset of string
● Semantics maps programs to semantic space

String

Syntax of language A

Semantic space

Semantics of
language A



  

Reading a Program
● "reading a program" means

"following a semantics arrow"
● We need to learn the semantics to read programs

Syntax A

Semantic space

Semantics  A



  

Two Languages
● Lang. A and B has different syntax and semantics
● Some programs, such as x, has same meaning,

Other programs, such as y, has different meaning

Syntax A
Semantic space

Semantics  A

Syntax B Semantics  B

x
y



  

Two Language Semantics Examples
● One program has same meaning in two 

languages
● One program has different meaning in two 

languages



  

One Program Has Same Meaning
 in Two Languages

● Ruby
– % ruby -e 'print "hello\n"'

hello

● Perl
– % perl -e 'print "hello\n"'

hello

● 'print "hello\n"' has same meaning in Ruby and Perl.



  

One Program Has Different Meaning 
in Two Languages

● Ruby
– irb> 1 + 2 * 3

7

● Smalltalk:
– gst> 1 + 2 * 3

9
– Smalltalk's binary operators have no precedence and 

always left-associative
1 + 2 * 3 is interpreted as (1 + 2) * 3



  

External DSL
● External DSL and Ruby are different languages
● Some programs, such as x, has same meaning,

Other programs, such as y, has different meaning

Ruby Syntax
Semantic space

Ruby Semantics

DSL Syntax DSL Semantics

x
y



  

Internal DSL
● Internal DSL Syntax is subset of host language
● However, it has own semantics and

some programs can have different meaning

Ruby Syntax
Semantic space

Ruby Semantics

DSL Syntax
DSL Semantics

x
y



  

Internal DSL has Different Semantics?
● rspec provides English-like language for BDD
● Ruby semantics and English semantics can differ 

Ruby Syntax
Semantic space

Ruby Semantics

rspec Syntax rspec (English)
Semantics

x
y



  

rubyspec (mspec) Example
● "should" method is implemented with "should" meaning in English

● spec/ruby/language/and_spec.rb:
it "evaluates to the last condition if all are true" do
  ("yes" && 1).should == 1
  (1 && "yes").should == "yes"
end

Ruby Syntax
Semantic space

Ruby Semantics

mspec Syntax English
Semantics

x
y



  

Ruby and English
English is used everywhere in Ruby (not only DSL)
● class and method names

matz rejects proposals until the name is appropriately 
means a feature

● English.rb
alias $ERROR_INFO $!

● rspec

These make Ruby programs easier-to-read for English user



  

Internal DSL
● Internal DSL makes programs easier-to-read for 

domain-knowledgeable people who knows 
domain semantics

● Easier-to-read doesn't mean easier-to-write
Programmers should make both meaning same
I.e. Programmers must know both languages 
(DSL and host language)



  

How to Design Good DSL



  

DSL Design Principle
● Respect domain convention

This makes DSL description easier for domain-
knowledgeable people

● Reduce  boilerplate
– Preamble/Postamble
– Frequent snippet

● Hide non-domain issue
memory-management, etc.



  

Several DSL Examples
● rake: DSL for build process
● erb: DSL for templates
● shell.rb: DSL for Unix-shell



  

Build Process
● There are many build tools using dependencies

make, rake, cmake, SCons, Ant, ...
● build process = dependencies + actions

a.c b.c

a.o b.o

com

gcc -c b.cgcc -c a.c

gcc -o com a.o b.o



  

make
● Makefile:

a.o: a.c
        gcc -c a.c
b.o: b.c
        gcc -c b.c
com: a.o b.o
        gcc -o com a.o b.o

a.c b.c

a.o b.o

com

gcc -c b.cgcc -c a.c

gcc -o com a.o b.o

● Graphical Structure 

"make" is a famous build tool
Makefile represents the graphical structure succinctly



  

rake
● Rakefile:

file "a.o" => "a.c" do
  sh "gcc -c a.c" end
file "b.o" => "b.c" do
  sh "gcc -c b.c" end
file "com" => ["a.o", "b.o"] do
  sh "gcc -o com a.o b.o" end

a.c b.c

a.o b.o

com

gcc -c b.cgcc -c a.c

gcc -o com a.o b.o

● Graphical Structure 

"rake" is build tool written in Ruby
Rakefile is similar to Makefile
Rakefile is bit more verbose than Makefile



  

rake without DSL
● rake can be used without DSL
● Build script:

require 'rake'
Rake.application = Rake::Application.new
Rake.application.init("rake", ARGV)
Rake::FileTask.define_task("a.o" => "a.c") do system("gcc -c a.c") end
Rake::FileTask.define_task("b.o" => "b.c") do system("gcc -c b.c") end
Rake::FileTask.define_task("com" => ["a.o", "b.o"]) do system("gcc -o com a.o b.o") end
Rake.application.top_level

● rake without DSL is not the supposed way to use rake
"system" is used because no easy way to invoke "sh"

● The build script is much verbose than Rakefile



  

Thought Experiment:
rake without DSL Improved

● Build script:
require 'rake'
r = Rake.new(ARGV)
r.define_file_task("a.o" => "a.c") do r.sh("gcc -c a.c") end
r.define_file_task("b.o" => "b.c") do r.sh("gcc -c b.c") end
r.define_file_task("com" => ["a.o", "b.o"]) do
  r.sh("gcc -o com a.o b.o") end
r.run

● It still verbose than Rakefile



  

DSL Design in Rake
● Respect domain convention

– Describe build graph using pair: target => dependencies
– The arrow is inverse with build direction, unfortunately

● Reduce  boilerplate
– Preamble: require 'rake'; r = Rake.new

Postamble: r.run
– Frequent snippet

"file" is shorter than "r.define_file_task"
"sh" is shorter than "r.sh"



  

DSL Implementation of Rake
● lib/rake/dsl_definition.rb

This filename is definite reason that Rake is DSL
● Tricks for DSL

– global methods
"file" and "sh" is defined to "main" object

– singleton pattern (global variable)
The state is maintained at Rake.application

– dedicated command, rake
It makes preamble/postamble implicit



  

ERB: template engine
● ERB source:

foo
<% 3.times do |i|
%>bar<% end %>
baz

● result:
foo
barbarbar
baz

Template Engine can be considered as
DSL for text generation



  

Text Generation with/without 
Template Engine

with ERB:
● foo

<% 3.times do |i|
%>bar<% end %>
baz

without ERB:
● s = +""

s << "foo\n".freeze
3.times do |i| 
  s << "bar".freeze end
s << "\nbaz\n".freeze
s



  

DSL Design in ERB
● Respect domain convention

– Use <% ... %> as SGML Processing Instruction and PHP

● Reduce boilerplate
– Preamble: s = +""

Postamble: s
– Frequent snippet

● string concatenations: s << 
● quotes and escapes: "...\n"

● Hide non-domain issue
– Destructive string concatenation (<<) is faster

than non-destructive concatenation (+)
– Avoid string allocations using .freeze



  

shell.rb: Shell-like Tool in Ruby
● Bourne shell:

  cat /etc/hosts | grep localhost > /tmp/foo
  head -1 /tmp/foo

● shell.rb:
irb> require 'shell'
irb> Shell.new.transact {
irb>   cat("/etc/hosts") | system("grep", "localhost") > "/tmp/foo"
irb>   system("head", "-1", "/tmp/foo")
irb> }
shell(#<Th:0x000055da32f97178 run>): /bin/grep localhost
shell(#<Th:0x000055da32f97178 run>): /bin/head -1 /tmp/foo
=> 127.0.0.1 localhost



  

shell.rb without Shell#transact
● shell.rb with transact:

Shell.new.transact {
  cat("/etc/hosts") |
  system("grep", "localhost") >
    "foo"
  system("head", "-1", "foo")
}

● shell.rb without transact
s = Shell.new
s.cat("/etc/hosts") |
s.system("grep", "localhost") >
 "/tmp/foo"
s.system("head", "-1", "foo")

transact method replaces self in the block to
avoid frequent "s."
It uses instance_eval



  

DSL Design in shell.rb
● Respect domain convention

– Use "|" for pipe, ">" for redirection
– cat method for cat command

● Reduce boilerplate
– Frequent snippet

● "cat" method instead of system("cat", ...)
def_system_command provides a way to define such 
methods

● "s." is removed using instance_eval 



  

Internal DSL
or

External DSL



  

Advantage of Internal DSL

Ruby and DSL can be mixed
● Ruby in DSL

– Rake actions can be written in Ruby

● DSL in Ruby
– generate Rake rules in Ruby loop



  

Disadvantage of Internal DSL
● Ruby and DSL is mixed

– DSL description is unusable except execution
● make -n show actions

rake -n doesn't show actions

● Tends to difficult to debug
– DSL description: debugging at Ruby level, not DSL level
– DSL implementation: dirty tricks makes debugging harder

● Tends to reach Ruby's limitation
– The limitation may be changed by Ruby versions



  

Internal DSL
or

Library



  

Between DSL and Library
● Many techniques to respect domain knowledge and reduce boilerplate
● Some techniques are cleaner and others are more dirty
● Clean techniques (Not so DSL-ish)

– Good names (English words)
– Appropriate use of operators

● Dirty techniques (DSL-ish)
– singleton pattern (global variable)
– instance_eval
– individual command
– TracePoint
– RubyVM::AbstractSyntaxTree



  

Readability of DSL
● Dirty techniques may improve readability

But it cannot improve endlessly
● Readability of DSL must saturate

More dirty techniques

readability



  

Writability of DSL
● Dirty techniques degrades writability 

(maintainability, debug) of DSL descriptions and 
implementations

● Disadvantage would be bigger endlessly

More dirty techniques

writability



  

Readability + Writability

More dirty techniques

readability

writability

readability+writability

● readability + writability would have maximum

maximum



  

Dirty Techniques are Discrete
● There are not so many dirty techniques

More dirty techniques

readability

writability

readability+writability

maximum

In this image,
only one dirty technique is enough



  

Summary
● Why internal DSL is a language?

– It has own semantics

● Why DSL is easier-to-read?
– Programmers (or domain experts) can use domain 

knowledge (domain semantics)

● How to design good DSL?
– Moderate use of dirty techniques
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