
Coq to C Translation with Partial Evaluation
Akira Tanaka

tanaka-akira@aist.go.jp
National Institute of Advanced Industrial Science and Technology (AIST)

Tsukuba, Ibaraki, Japan

Abstract
Coq proof assistant can be used to prove various properties of
programs written in the Gallina language. It is also possible
to translate Gallina programs to OCaml programs. However,
OCaml is not suitable for low-level programs. Therefore, we
are developing a Coq plugin for Gallina to C translation. This
plugin transforms functions written in Gallina into a form
as close to C as possible within Gallina. This transformation
includes partial evaluation, which improves execution effi-
ciency and eliminates polymorphism and dependent types.
We can easily verify in Coq that this transformation does
not change the execution result, and thus it is highly reliable.
And Gallina functions after this transformation can be easily
translated to C.

CCS Concepts: • Software and its engineering→ Com-
pilers; Software verification.

Keywords: Coq, C, Gallina, translator, compiler, verification,
partial evaluation, tail recursion
ACM Reference Format:
Akira Tanaka. 2021. Coq to C Translation with Partial Evalua-
tion. In Proceedings of the 2021 ACM SIGPLAN Workshop on Par-
tial Evaluation and Program Manipulation (PEPM ’21), January 18–
19, 2021, Virtual, Denmark. ACM, New York, NY, USA, 18 pages.
https://doi.org/10.1145/3441296.3441394

1 Introduction
We are developing a Gallina to C translator, Codegen1 plugin
for Coq proof assistant [10], which can generate low-level
C programs. The initial target of Codegen is libraries that
handle complex data structures such as succinct data struc-
tures [8]. To achieve this, we must be able to easily use
various low-level features such as 64 bit integers, built-in
functions for CPU instructions, hardware specific types such
as for SIMD registers, and so on. In other words, the goal
1https://github.com/akr/codegen

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
a national government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
PEPM ’21, January 18–19, 2021, Virtual, Denmark
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8305-9/21/01. . . $15.00
https://doi.org/10.1145/3441296.3441394

is to be able to use features that are available for usual C
programs from Gallina programs.

Gallina is a purely functional ML-like language provided
by Coq and is used for programs and proofs. However it
shares several features with many imperative languages in-
cluding C.
• function definition
• function invocation
• conditional
• variable declaration and its initialization
• variable reference
• recursive function

With these features, basic programming is possible. There-
fore, it is possible to translate a Gallina subset of these fea-
tures into a C subset to achieve translation without over-
heads.

But there are also gaps between Gallina and C.
1. Gallina has type polymorphism, but C does not.
2. Gallina has dependent types, but C does not.
3. Gallina can use any evaluation strategy, but C is strict.
4. Gallina uses curried functions, but C does not.
5. Gallina has first-class functions, but C does not.
6. Gallina’s data types (such as Peano’s naturals defined

as an inductive type) are suitable for proof but its naive
implementation is too inefficient. C has efficient data
types such as 64 bit integer.

7. All Gallina programs terminate but C does not.
8. Gallina uses only immutable values but C uses mutable

values.
9. Gallina does not require to release memory but C re-

quires.
10. Gallina does not have a loop, but C does.
In this paper, we describe how we used partial evaluation

to address the first two of these gaps in the translator from
Gallina to C. Gallina achieves type polymorphism and de-
pendent types as type computation. We eliminate them by
computing them statically.

We also describe several Gallina transformations to make
Gallina functions suitable to translate to C. The result of
these transformations (including partial evaluation) is easily
verified by Coq because they are convertible.

The 3rd and 4th gaps relate evaluation strategy. Codegen
generates C functions that implement the strict evaluation of
Gallina terms. It does not violate Gallina semantics because
Gallina can use any evaluation strategy. We assume that a

14

https://doi.org/10.1145/3441296.3441394
https://github.com/akr/codegen
https://doi.org/10.1145/3441296.3441394

PEPM ’21, January 18–19, 2021, Virtual, Denmark Akira Tanaka

Gallina function body is evaluated after all arguments have
been given, just as in C. This means that the evaluation of a
partial application evaluates the function position and the
arguments but does not evaluate the body of the function.
Codegen eliminates tail recursion using goto to address

the last gap. Codegen can generate a C function that con-
tains multiple loops and nested loops from Gallina terms
which contain fixpoints at non-tail positions and nested fix-
points. Codegen also supportsmutually tail-recursive Gallina
functions by generating a single C function that contains
multiple function bodies. Although goto is not usable for
indirect calls, direct calls are enough to represent loops.

Solutions to the other gaps are not the subject of this paper
and are summarized in Appendix A.
Section 2 explains that Coq has a feature similar to par-

tial evaluation but it has problems. Section 3 explains the
whole structure of our translation. Section 4 explains the
transformations in Gallina terms. Section 5 explains C code
generation. Section 6 explains several examples. We describe
related work in Section 7 and conclude in Section 8.

2 Partial Evaluation with Stock Coq?
Gallina syntax is shown in Figure 1. Gallina has conversion
rules shown in Figure 2 to test the equality of terms. If two
terms are confluent by the conversion rules, they are said to
be convertible.

The six reductions in the conversion rules define the eval-
uation of Gallina. Since the reductions are strong normal-
ization, any reduction can be applied to any subterm in any
order. Coq also has a command to define a reduced term as
a new constant.

These features are similar to partial evaluation. However,
it has two problems: (1) the reductions can duplicate com-
putations to produce inefficient programs; (2) Coq cannot
replace a function and its static arguments with a specialized
function.

2.1 Reduction of pow
We can define a power function in Coq.
Fixpoint pow x y := match y with

| 0 ⇒ 1

| S y' ⇒ x * pow x y'

end.

We can define the normal form of pow x 3with reductions
(beta, iota-match, iota-fix, and delta-global for the constant
pow) using call-by-value strategy.
Definition pow3 x :=

Eval cbv beta iota delta [pow] in pow x 3.

This definition is the same as follows.
Definition pow3 x := x * (x * (x * 1)).

The result has no recursive call and conditional. It should
run efficiently.

t = x variable
| c constant
| C constructor
| T type
| λx :T . t abstraction
| t u application
| let x := t : T in u let-in
| match t0 with (Ci ⇒ ti)i=1...h end conditional
| fix (fi/ki :Ti := ti)i=1...h for fj fixpoint

Note:
• u represents a term as t .
y, z, and f represent a variable as x .
U represents a type as T .
• We write (· · · ((t u1) u2) · · · un) as t u1 . . .un .
• k is an integer.
ki for fixpoint specify the decreasing argument for fi .
• If it is unambiguous, we omit type annotations for the sake
of simplicity. We also omit ki in fixpoints if they are not
used.
• We omitted the elimination predicate (as-in-return clause
of match-expression). It is not used in reductions.
• match-branches ti are functions that take the constructor
members (constructor arguments without inductive type
parameters). This formalism is taken from CIC [11].
• We omitted the detail of the types. Actual Gallina permits
any Gallina term which evaluates to a type.

Figure 1. Gallina syntax.

But Coq has no feature to replace pow invocations in the
environment. We cannot replace pow z 3 with pow3 z in
functions already defined. If we have a function f that uses
pow z 3 and generate OCaml definition of f using the Ex-
traction plugin, the generated function uses pow, not pow3.

Another problem is that the reduction rules can duplicate
computations.
Definition pow_2x_3 x :=

Eval cbv beta iota delta [pow] in pow (x + x) 3.

This is the same as follows.
Definition pow_2x_3 x :=

(x + x) * ((x + x) * ((x + x) * 1)).

This result contains 3 times of x + x. Thus, it is not as effi-
cient as we want.

2.2 Verification of pow3
We can verify that pow x 3 and pow3 x are equal in Coq.
Goal ∀ x, pow x 3 = pow3 x. Proof. reflexivity. Qed.

This equality means that evaluation of them produces the
same value. The reflexivity tactic confirms that pow x 3

and pow3 x are convertible.

15

Coq to C Translation with Partial Evaluation PEPM ’21, January 18–19, 2021, Virtual, Denmark

beta: E[Γ] ⊢ ((λx . t) u) ▷ t{x/u} delta-local:
(x := t) ∈ Γ

E[Γ] ⊢ x ▷ t
delta-global:

(c := t) ∈ E

E[Γ] ⊢ c ▷ t

zeta: E[Γ] ⊢ let x := t in u ▷ u{x/t}

iota-match:
E[Γ] ⊢ Cj u1 . . .up+m : T p is the number of parameters of the inductive type T

E[Γ] ⊢ match (Cj u1 . . .up+m) with (Ci ⇒ ti)i=1...h end ▷ tj up+1 . . .up+m

iota-fix:
ukj = C u ′1 . . .u

′
m

E[Γ] ⊢ (fix (fi/ki := ti)i=1...h for fj) u1 . . .ukj ▷ tj { fk/fix (fi/ki := ti)i=1...h for fk }k=1...h u1 . . .ukj

eta expansion:
E[Γ] ⊢ t : ∀x :T . U

E[Γ] ⊢ t ▷ λx :T . (t x)
Note:
• The rules shown here are reductions, except the eta expansion.
• t{x/u} means a term in which x in term t is replaced by u. This notation is taken from the Coq reference manual [11].
• Variables cannot conflict because Coq uses de Bruijn’s indexes to represent variables.
• E is a global environment which is a list of global assumptions (c :T), global definitions (c := t :T), and inductive definitions
(Ind [p] (ΓI := ΓC)).
• Γ is a local context which is a list of local assumptions (x :T) and local definitions (x := t :T). The local assumptions represent
variables bounded by outer abstractions and fixpoints. The local definitions represent variables bounded by outer let-in.
• If it is unambiguous, we omit type annotations in these definitions for the sake of simplicity.
• Iota-match reduces match @cons nat 1 nil with (nil⇒ t1) (cons⇒ t2) end to t2 1 nil because list has one parameter (p = 1)
and cons has two members (m = 2).

Figure 2. Gallina conversion rules.

3 Translation from Gallina to C
We implement the Gallina to C translation with the following
two kinds of translation phases.

• Convertible transformations
• C code generation

The former transforms Gallina functions in a convertible
way. The latter translates Gallina functions to C functions.

We implement translation phases in the former as much
as possible. This allows us to verify with Coq that these
transformations do not change the result of the function.

A user can configure the translation as follows.

• constant, constructor and inductive type name map-
pings between Gallina and C (Gallina names are used
as-is2 by default)
• zero-argument constructors to translatewithout paren-
thesis (Codegen generates parenthesis by default but
possible to translate true to true instead of true() and
O to 0)
• code snippets to translate match-expression to switch-
statement (they are generated from the inductive type
and constructor names by default)
• which the arguments are static or dynamic (only type
arguments are static by default)
• functions to inline (no functions to inline by default)
• which types are linear (no linear types by default)

2Invalid characters for a C identifier are replaced by _.

4 Convertible Transformations
Codegen defines two constants with the convertible trans-
formations: terms before and after the transformations.
For example, when a user specifies the second argument

of pow static and Codegen find an invocation of pow with the
actual argument 3, Codegen defines two constants3:

Definition p_pow3 x := pow x 3. (* before trans. *)

Definition s_pow3 x := . . . (* after trans. *)

The convertible transformations generate the latter (prefixed
with s_) from the former (prefixed with p_). Codegen verifies
the convertibility of them when the latter is defined.
Codegen applies seven convertible transformations de-

scribed in Section 4.2 to Section 4.8.

4.1 Computation Size
We define the convertible transformations that do not dupli-
cate computations. For this purpose, we define “computation
size” as an approximation of running time4.
We define the computation size as the number of match-

expression evaluated at run time. The size estimates a loop
count. Because a loop is represented by recursion in Gallina
and recursive functions must use match-expression to obtain
a subterm of the decreasing argument for a recursive call.

3We use longer names in actual implementation.
4The computation size is not an approximation of code size. If we want to
avoid exponential code bloat, we can disable delta-fun, iota-fix-var, and iota-
fix-var’. This makes complex partial evaluation impossible but monomor-
phization is still possible.

16

PEPM ’21, January 18–19, 2021, Virtual, Denmark Akira Tanaka

zeta-arg:
E[Γ] ⊢ ti : Ti t0 is not an application ti is not a variable xi is a fresh variable
E[Γ] ⊢ t0 x1 . . . xi−1 ti ti+1 . . . tn ▷ let xi := ti : Ti in t0 x1 . . . xi−1 xi ti+1 . . . tn

zeta-item:
E[Γ] ⊢ t0 : T0 t0 is not a variable x0 is a fresh variable

E[Γ] ⊢ match t0 with (Ci ⇒ ti)i=1...h end ▷ let x0 := t0 : T0 in match x0 with (Ci ⇒ ti)i=1...h end

Figure 3. V-reductions.

t = x | c | C | T | λx :T . t | let x := t : T in u

| fix (fi/ki :Ti := ti)i=1...h for fj

| t x ← (1)
| match x with (Ci ⇒ ti)i=1...h end ← (2)

Figure 4. V-normal form restricts Gallina terms that (1) ap-
plication arguments and (2) match items to variables.

4.2 Inlining
Codegen inlines user-specified functions using delta-global
reduction. (The target of specialization, pow in p_pow3 for
example, is inlined automatically.) This phase does not apply
further reductions such as beta reduction.

Since delta-global is part of the conversion rules, this trans-
formation is convertible.

We assume functions inlined are defined as terms formed
as an abstraction or a fixpoint. In this case, inlining does not
change the computation size because the evaluation of them
does not cause an evaluation of match-expression.

4.3 V-Normalization
Codegen transforms arguments of application and match
items as variables as A-normal form [4]. We call the result of
this transformation V-normal form. V-normal form permits
more expressions at binding expressions in let-in and func-
tion positions in applications than A-normal form. Figure 3
shows V-reductions to generate V-normal form shown in
Figure 4.
V-reductions introduce let-in expressions. V-reductions

produce a convertible term because they are zeta expansion.
V-reductions move an expression from an application ar-

gument and a match item. This moves computations but
does not change the computation size.

4.4 S-Normalization
We define S-reductions in Figure 5 to simplify V-normal
terms. S-reductions are the reduction rules for the partial
evaluation without computation duplication.
S-reductions resemble the conversion rules. Especially,

they are terminating because iota-fix-var (and iota-fix-var’)
has the same guard condition of iota-fix.

beta-var. The beta-var reduction is a restricted version of
the beta reduction. It applies the beta reduction when a beta

redex occurs in the function position of a nested application
that returns an inductive value. This avoids to reduce partial
applications and follows our strict evaluation strategy that
invokes a function with all arguments. The arguments of the
beta-var redex are variables because of V-normal form. It
does not duplicate computation because the argument does
not contain a match-expression.

delta-var. The delta-var reduction is a restricted version
of the delta-local reduction. It can be applied only when
the local definition maps the variable to another variable.
This happens when the outer let-in bounds the variable to
another variable. Since a variable does not contain a match-
expression, delta-var reduction does not change the compu-
tation size.

delta-fun. The delta-fun reduction is another restricted ver-
sion of the delta-local reduction. It can be applied only when
the variable f occurs in the function position of an appli-
cation, f y1 . . .yq (0 < q), and the bounded expression,
t x1 . . . xp (0 ≤ p), has no computation. The evaluation of
the function t has no computation because there is a premise
to avoid match-expression. The evaluation of the arguments,
x1 . . . xp , has no computation because they are just variables.
t x1 . . . xp is a partial application because it is the function of
f y1 . . .yq and 0 < q. The evaluation of t x1 . . . xp does not
evaluate the function body of t because our strict evaluation
strategy does not invoke the function of a partial application.
Thus, the bounded expression has no computation and the
delta-fun reduction does not change the computation size.

zeta-flat. The zeta-flat reduction commutes let-in expres-
sion to make any let-in expression does not bind a let-in
expression. This reduction can be considered as a combi-
nation of zeta reduction to delete the let-in expression for
x and zeta expansion to restore it in the different position.
The evaluation of the term before and after the reduction is
both that evaluation of t1, t2, t0. Thus, it does not change the
computation size.

zeta-app. The zeta-app reduction moves a let-in binding
from the function position of an application outside of the
application. This reduction can be considered as a combina-
tion of zeta reduction and zeta expansion such as zeta-flat
reduction. This reduction moves t but does not change the
computation size.

17

Coq to C Translation with Partial Evaluation PEPM ’21, January 18–19, 2021, Virtual, Denmark

beta-var:
0 < n E[Γ] ⊢ (λx . t) y1 . . .yn : T T is an inductive type

E[Γ] ⊢ (λx . t) y1 . . .yn ▷ t{x/y1} y2 . . .yn
delta-var:

(x := y) ∈ Γ
E[Γ] ⊢ x ▷ y

delta-fun:
0 ≤ p 0 < q (f := t x1 . . . xp) ∈ Γ t is one of x, c,C, λx . u, fix (fi/ki := ti)i=1...h for fj

E[Γ] ⊢ f y1 . . .yq ▷ t x1 . . . xp y1 . . .yq

zeta-flat: E[Γ] ⊢ let y := (let x := t1 in t2) in t0 ▷ let x := t1 in (let y := t2 in t0)

zeta-app: E[Γ] ⊢ (let x0 := t in u) x1 . . . xn ▷ let x0 := t in (u x1 . . . xn)

iota-match-var:
(x := Cj y1 . . .yp+m : T) ∈ Γ p is the number of parameters of the inductive type T

E[Γ] ⊢ match x with (Ci ⇒ ti)i=1...h end ▷ tj yp+1 . . .yp+m

iota-fix-var:

(xkj := C y1 . . .ym) ∈ Γ f ′1 . . . f
′
h are fresh variables

E[Γ] ⊢ (fix (fi/ki := ti)i=1...h for fj) x1 . . . xn : T T is an inductive type
E[Γ] ⊢ (fix (fi/ki := ti)i=1...h for fj) x1 . . . xn ▷

let f ′1 := fix (fi/ki := ti)i=1...h for f1 in . . . let f ′h := fix (fi/ki := ti)i=1...h for fh in

tj { fk/f
′
k }k=1...h x1 . . . xn

iota-fix-var’:

(xkj := C y1 . . .ym) ∈ Γ

(f ′1 := fix (fi/ki := ti)i=1...h for f1) ∈ Γ . . . (f
′
h := fix (fi/ki := ti)i=1...h for fh) ∈ Γ

E[Γ] ⊢ (fix (fi/ki := ti)i=1...h for fj) x1 . . . xn : T T is an inductive type
E[Γ] ⊢ (fix (fi/ki := ti)i=1...h for fj) x1 . . . xn ▷ tj { fk/f

′
k }k=1...h x1 . . . xn

Figure 5. S-reductions.

iota-match-var. The iota-match-var reduction reduces a
match-expression to one of its branches if the constructor
for the match item is known. Since the match item is always
a variable in V-normal form, the premise of this reduction
examines the local definition. We require that the local def-
inition contains a constructor application with arguments
as variables. This requirement makes it possible to use the
constructor members in the reduced expression without du-
plicating computation. This reduction can be considered as a
combination of delta-local reduction to make the match item
constructor form and iota-match reduction. It decreases the
computation size because it removes the evaluation of the
match-expression at run time.

iota-fix-var. The iota-fix-var reduction reduces a fixpoint
application that returns an inductive value. We require all
arguments, not only until the decreasing arguments, to avoid
reducing partial applications. This reduction introduces let-
in bindings for the fixpoints to preserve V-normal form. Since
the decreasing argument is a variable in V-normal form, the
premise examines the local definition. Thus, this reduction
can be considered as a combination of delta-local reduction
to make the decreasing argument constructor form, iota-fix
reduction, delta-local expansion to restore the decreasing
argument, and zeta expansions to extract the fixpoints sub-
stituted by the iota-fix reduction. Since the introduced let-in
bindings have no computation (because they are fixpoints
without arguments), this reduction does not change the com-
putation size.

iota-fix-var’. The iota-fix-var’ reduction is the same as iota-
fix-var reduction but reuses already bounded fixpoints. This
reduction is optional. This reduction can be considered as a
combination of the conversion rules the same as iota-fix-var
except that delta-local expansions are used instead of the
last zeta expansions. It has the property the same as iota-fix-
var reduction except that the size of intermediate terms are
smaller.

4.5 Call Site Replacement
Codegen replaces a function and its static arguments with a
specialized function. When new values for static arguments
are found, a new specialized function (before transformations
prefixed by p_) is defined in the global environment.

The values of static arguments are obtained by normaliz-
ing the actual static arguments (variables) using the reduc-
tions in the conversion rules. Codegen requires that these
normal forms have no free variables.
This transformation does not start the convertible trans-

lations for other functions and does not define simplified
functions (prefixed with s_) for the other functions. Thus,
Codegen can transform one function at a time.

This transformation can be considered as delta-global ex-
pansion addition to the reductions for normalizing the static
arguments. If a dynamic argument exists before a static ar-
gument such as pow, beta expansion is also used before the
delta-global expansion: when the normal form of three is
3, pow z three is transformed to (fun x ⇒ pow x 3) z and
(fun x ⇒ pow x 3) is replaced with the constant p_pow3.

18

PEPM ’21, January 18–19, 2021, Virtual, Denmark Akira Tanaka

zeta-del:
x does not occur in u

E[Γ] ⊢ let x := t in u ▷ u

Figure 6. Unused let-in deletion.

Although delta-global expansion introduces new constant
in the global environment, convertibility test still works
because it can use delta-global reduction.

It does not change the computation size because the func-
tion position is a constant and the static arguments are vari-
ables and they do not contain match-expression.

4.6 Unused let-in Deletion
This transformation deletes unused let-in expressions as
shown in Figure 6. It is applied after call site replacement
because call site replacement removes variable references
such as three in the example in Section 4.5.

This reduction is a restricted zeta reduction.
This reduction removes the binding expression t in let-in

expression. Therefore, it can decrease the computation size
when an evaluation of t evaluates a match-expression. But
it does not increase the computation size.

4.7 Argument Completion
Codegen applies eta expansion to avoid partial applications
because C has no partial application. This makes all C vari-
ables5 explicit in Gallina. It simplifies the arguments gen-
erated by eta expansion by moving the arguments into a
body of let-in expression and beta-var reduction. Thus, this
transformation can be considered as a combination of eta
expansion, zeta-app reduction, and beta-var reduction.
It also transforms match-branches into nested abstrac-

tions corresponding to the members of constructors. This
transformation is also eta expansion.

This transformation does not change the computation size
because we apply eta expansion only when it does not delay
evaluation. Since a function body is evaluated after all argu-
ments are given, we can apply eta expansion for the function
body (top-level functions and functions for fixpoints). If a
constructor hask members, the corresponding match-branch
is evaluated with k arguments so we can apply k times of
eta expansion for the branch.

The detail of this transformation is shown in Appendix B.

4.8 C Variable Allocation
This transformation allocates C variables for Gallina vari-
ables. It generates unique names that are valid in C. It may al-
locate one C variable formultiple Gallina variableswhen they
are always bound to the same value. For example, y is always
the same as z in match x with tt ⇒ fun y ⇒ y end z. We

5The temporary variables for parallel assignments are the exception.

formalized it in Appendix C to generates a variable mapping
from Gallina to C.
Codegen implements this allocation by renaming vari-

ables in Gallina terms. This “renaming” does not change de
Bruijn’s indexes but changes variable names. Therefore, we
can inspect the renaming by printing the result of the con-
vertible transformations. This is the reason that we define
this as one of the convertible transformations. This transfor-
mation does not affect the evaluation of Gallina terms.

4.9 Well-Typedness of the Transformations
The transformations produce convertible terms because they
are combinations of the conversion rules. However, several
transformations use the reverse of the conversion rules. V-
normalization uses zeta expansion. S-normalization uses
zeta expansion and delta-local expansion. Call site replace-
ment uses delta-global expansion and beta expansion. Argu-
ment completion uses zeta expansion. Since the conversion
rules restore the original term, they do not break convert-
ibility. Furthermore, zeta expansion, delta-local expansion,
and delta-global expansion produces a well-typed term from
a well-typed term. They replace an expression with a new
variable or constant which is convertible to the original ex-
pression. Since the Gallina typing rules do not distinguish
convertible terms, they produce a well-typed term. The beta
expansion can produce an ill-typed term for a dependently
typed term [11] but we focus non-dependent terms after
S-normalization.

5 C Code Generation
Codegen generates C code from the result of the convertible
transformations. However Codegen gives up code generation
if the result still contains type computations6 or closure
generation. We describe the subset of Gallina that can be
translated to C in Appendix D7.

This translation is easy because:
• No complex subexpressions because of V-normal form
(like A-normal form)
• No type computations and closure generation
• No partial applications and C variables are already
allocated

The convertible transformations may retain lambda ab-
stractions not only at the top-level of a function. Codegen
can generate C code for them as far as arguments are given
lexically outside of them. For example, Codegen can gener-
ate C code for match x with tt ⇒ fun y ⇒ y end z. Since
6The type computation includes type polymorphism, polymorphic recur-
sion, and dependent types
7This is the intermediate representation for Codegen, not the defini-
tion of the source Gallina terms for Codegen. We do not define the
source Gallina terms for Codegen because the convertible transformations
may remove arbitrary complex terms. For example, Codegen can handle
match u with true⇒ 0 | false⇒ t end for any t , as far as u is reduced
to true. It is not possible to determine that without actually reducing u .

19

Coq to C Translation with Partial Evaluation PEPM ’21, January 18–19, 2021, Virtual, Denmark

Codegen does not support closures yet, lambda abstractions
that have no such actual arguments are not supported.

Codegen needs one more complicated task, tail recursion
elimination. Codegen guarantees it because Gallina has no
loops and we need a reliable way to describe loops that do
not consume the stack. Since C compilers do not guarantee
tail recursion elimination, Codegen must do it.
We show the code generation in Figure 7 for non-tail

position and Figure 8 for tail position. Figure 9 defines aux-
iliary functions for them. Top-level function generation is
described in Appendix E.

Codegen translates a recursive call in a tail position using
goto. This is the traditional translation method and allows
us to generate a loop in a tail position.
We also generate a loop in a non-tail position. We want

this feature to generate loops for inlined small higher-order
functions such as fold_left. Such functions are used not
only in tail positions. Thus, we generate a loop from a fix-
point application in a non-tail position. However, not all of
them can be a loop.
Whether a fixpoint application in a non-tail position can

be a loop is determined by TR in Figure 10. TR determines
that a fixpoint can be a loop if all recursive calls to the func-
tions bounded by the fixpoint are translated to goto. This
is equivalent to a C compiler determining that a recursive
function cannot be inlined, but a non-recursive function can
be inlined, even if it contains goto.

Codegen can generate a C function that contains multiple
Gallina functions. It is used to generate mutually recursive
functions with goto. See Appendix E for details.

6 Translation Examples
6.1 Convertible Transformations without

Duplicating Computations
The convertible transformations do not duplicate computa-
tions. Therefore, we can specialize pow_2x_3 in Section 2.1
properly. The convertible transformations in Codegen define
s_pow_2x_3 as follows:

Definition s_pow_2x_3 v1_x :=

let v2_n := v1_x + v1_x in

let v3_n := 0 in

let v4_n := S v3_n in

let v5_n := v2_n * v4_n in

let v6_n := v2_n * v5_n in

v2_n * v6_n.

The addition occurs only once and is not duplicated.

6.2 Specialized Function Application Generation
Codegen generates a specialized function that invokes other
specialized functions. Assume the following definition and
the second argument of pow is static.

Definition f x y := pow x 3 + pow y 3.

The convertible transformation for f generates p_pow3 and
s_f as follows. (p_f is not generated because f has no static
arguments.)

Definition p_pow3 x := pow x 3.

Definition s_f v1_x v2_y :=

let v3_n := p_pow3 v1_x in

let v4_n := p_pow3 v2_y in

v3_n + v4_n.

s_pow3 can be generated by applying the convertible trans-
formations to p_pow3.

Definition s_pow3 v1_x :=

let v2_n := 0 in

let v3_n := S v2_n in

let v4_n := v1_x * v3_n in

let v5_n := v1_x * v4_n in

v1_x * v5_n

Codegen generates C functions for pow3 and f from s_pow3

and s_f as in Figure 11. This result shows that Codegen gen-
erates a specialized function that invokes another specialized
function: the invocation of pow in f is translated to the in-
vocation of pow3. This is different from Coq reductions with
the Extraction plugin described in Section 2.1.
These functions depend on a C implementation of the

inductive type and primitive functions. If a user wants to
implement nat by uint64_t, the implementation in Figure 12
is possible8.

6.3 Monomorphization of List.rev
The convertible transformations are usable for monomor-
phization (type polymorphism elimination). Since Gallina is
a dependently typed language, types are first-class values
and they can be passed as arguments. If a type is passed as
an argument and it is used for the type of a later argument,
the function is polymorphic. Thus, a beta reduction can elim-
inate a type argument. (If a fixpoint has a type argument,
we cannot monomorphize it. This means Codegen cannot
eliminate polymorphic recursion.)

Coq has a list reversal function rev in the standard library.
It is defined as follows10.

Definition rev := fun (A : Type) ⇒

fix rev (l : list A) : list A :=

match l with

| nil ⇒ nil

| x :: l' ⇒ rev l' ++ x :: nil

end.

8nat and uint64_t are not isomorphic because nat has infinitely many
elements and uint64_t has a finite number of elements. We provide another
Coq plugin, monadification9 [9] to translate a function to use option monad.
We can use it to verify that this mismatch does not cause problems when
overflow does not occur.
9https://github.com/akr/monadification
10The standard library uses Section to define this term.

20

https://github.com/akr/monadification

PEPM ’21, January 18–19, 2021, Virtual, Denmark Akira Tanaka

AK Jt /x1 . . . xnK generates C code for t x1 . . . xn in a non-tail position. The result expression is passed to K .
K(e) = “v = e;” in simple situations.

AK Jx / K = K(“x”)
AK Jx /x1 . . . xnK = “ passign(fvars′JxK, x1 . . . xn) goto entry_x;” n > 0 ∧ x is bounded by a fixpoint ∧ x ∈ TR
AK Jx /x1 . . . xnK = K(“x(y1, . . . ,yo, x1, . . . , xn)”) n > 0 ∧ x is bounded by a fixpoint ∧ x < TR
AK Jc /x1 . . . xnK = K(“c(x1, . . . , xn)”) n ≥ 0
AK JC /x1 . . . xnK = K(“C(x1, . . . , xn)”) n ≥ 0
AK Jt x0 /x1 . . . xnK = AK Jt /x0 x1 . . . xnK
AK Jlet x := t1 in t2 /x1 . . . xnK = “ AK ′Jt1 / K AK Jt2 /x1 . . . xnK” where K ′(e) = “x = e;”
AK Jλx . t /x1 x2 . . . xnK = AK Jt /x2 . . . xnK (x and x1 are mapped to the same C variable)
AK Jmatch x with (Ci ⇒ λyi1 . . . λyi NMCi

. ti)i=1...h end /x1 . . . xnK = where x : T
“switch (swfuncT (x)) {
. . .

caselabelCi :

yi1 = get_memberCi 1(x); . . . ; yi NMCi
= get_memberCi NMCi

(x);

AK Jti /x1 . . . xnK
break;

. . .

}”
AK Jfix (fi := ti)i=1...h for fj /x1 . . . xnK = fj ∈ TR

“ passign(fvarsJtjK, x1 . . . xn)

GENBODYATK ′ Jfix (fi := ti)i=1...h for fjK
exit_fj:”

where K ′(e) ={
K(e) K(e) contains goto
“K(e) goto exit_fj;” otherwise

AK Jfix (fi := ti)i=1...h for fj /x1 . . . xnK = fj < TR

“K(fj(y1, . . . ,yo, x1 . . . , xn))
goto skip_fj;

GENBODYANJfix (fi := ti)i=1...h for fjK
skip_fj:”

Note:
• “ . . . ” means a string. A string can contain characters in typewriter font and expressions starting in italic or roman font. The former
is preserved as-is. The latter embeds the value of the expression (with name translation from Gallina to C).
• Gallina types, constants, and constructors have corresponding (user-configurable) C names and they are implicitly translated. Gallina
variables are translated by the mapping defined in Section 4.8.
• TR = TRJtKn where the translating function is defined as Definition c := t and t is an n-arguments function.
• NMC is the number of the members of the constructor C (the number of arguments without the parameters for the inductive type):
NMC =m if C : T1 → · · · → Tp → Tp+1 → · · · → Tp+m → T0 and T0 is an inductive type which has p parameters.
• swfuncT , caselabelCi , and get_memberCi j are defined by a user to translate match-expressions for the inductive type T .
• passign(y1 . . .yn, x1 . . . xn) is a parallel assignment. It is translated to a sequence of assignments to assign x1 . . . xn into y1 . . .yn . It
may require temporary variables.
• y1, . . . ,yo are the outer variables of the fixpoint.
• We do not define AK Jλx . t / K because we do not support closures yet.
• Actual Codegen generates GENBODYANJK in a different position to avoid the label skip_fj and goto skip_fj;.

Figure 7. Translation to C for a non-tail position.

21

Coq to C Translation with Partial Evaluation PEPM ’21, January 18–19, 2021, Virtual, Denmark

BK Jt /x1 . . . xnK generates C code for t x1 . . . xn in a tail position. The result expression is passed to K .
K(e) = “return e;” in simple situations.

BK Jx / K = K(“x”)
BK Jx /x1 . . . xnK = “ passign(fvars′JxK, x1 . . . xn) goto entry_x;” n > 0 ∧ x is bounded by a fixpoint
BK Jc /x1 . . . xnK = K(“c(x1, . . . , xn)”) n ≥ 0
BK JC /x1 . . . xnK = K(“C(x1, . . . , xn)”) n ≥ 0
BK Jt x0 /x1 . . . xnK = BK Jt /x0 x1 . . . xnK
BK Jlet x := t1 in t2 /x1 . . . xnK = “ AK ′Jt1 / K BK Jt2 /x1 . . . xnK” where K ′(e) = “x = e;”
BK Jλx . t /x1 x2 . . . xnK = BK Jt /x2 . . . xnK (x and x1 are mapped to the same C variable)
BK Jmatch x with (Ci ⇒ λyi1 . . . λyi NMCi

. ti)i=1...h end /x1 . . . xnK = where x : T
“switch (swfuncT (x)) {
. . .

caselabelCi : yi1 = get_memberCi 1(x); . . . ;yi NMCi
= get_memberCi NMCi

(x);

BK Jti /x1 . . . xnK
. . .

}”
BK Jfix (fi := ti)i=1...h for fj /x1 . . . xnK =
“ passign(fvarsJtjK, x1 . . . xn)

GENBODYBK Jfix (fi := ti)i=1...h for fjK”
Note: We do not define BK Jλx . t / K because a tail position cannot be a function after the argument completion.

Figure 8. Translation to C for a tail position.

fvarsJtK =


“x ; fvarsJuK” t = λx . u

fvarsJtjK t = fix (fi := ti)i=1...h for fj

“” otherwise

fvars′JfiK = fvarsJtiK for functions bounded by fix (fi := ti)i=1...h for fj

GENBODYATK JtK =


GENBODYATK JuK t = λx . u

“entry_fi: GENBODYATK JtiK” t = fix (fi := ti)i=1...h for fj

for i = j, 1, . . . , (j − 1), (j + 1), . . . ,h
AK Jt / K otherwise

GENBODYANJtK =


GENBODYANJuK t = λx . u

“entry_fi: GENBODYANJtiK” t = fix (fi := ti)i=1...h for fj

for i = 1, . . . ,h
BK Jt / K otherwise where t : T K(e) = “*(T*)ret = e; return;”

GENBODYBK JtK =


GENBODYBK JuK t = λx . u

“entry_fi: GENBODYBK JtiK” t = fix (fi := ti)i=1...h for fj

for i = j, 1, . . . , (j − 1), (j + 1), . . . ,h
BK Jt / K otherwise

Note:
• fvars and fvars′ returns a list of variables: x1; . . . ;xn ;. For simplicity, we omit “;” if not ambiguous.
• “д(i)” for i = j1, . . . , jn means “д(j1) . . . д(jn)”.

Figure 9. Auxiliary functions for translation to C.

22

PEPM ’21, January 18–19, 2021, Virtual, Denmark Akira Tanaka

TRJtKn is the first element of RNTJtKn .
(R,N ,T) = RNTJtKn classify variables in t assuming that it is called with n arguments as t x1 . . . xn :

R : tail-recursive fixpoint bounded functions that do not need to be real functions
N : free variables at non-tail positions of t
T : free variables at tail positions of t

“tail position” is extended to the function position of the application at a tail position.
R distinguishes fixpoint bounded functions translatable without actual functions (but with goto) or not.

TRJtKn = R where (R,N ,T) = RNTJtKn

RNTJtKn =

(∅,∅, {x}) t = x

(∅,∅,∅) t = c ∨ t = C

(R,N ∪ {x},T) t = u x where (R,N ,T) = RNTJuKn+1
(R1 ∪ R2,N1 ∪T1 ∪ N2 − {x},T2 − {x}) t = let x := t1 in t2

where (R1,N1,T1) = RNTJt1K0 (R2,N2,T2) = RNTJt2Kn(⋃h
i=1 Ri ,

⋃h
i=1 Ni ,

⋃h
i=1Ti

)
t = match x with (Ci ⇒ ti)i=1...h end where (Ri ,Ni ,Ti) = RNTJtiKNMCi +n

(R,N − {x},T − {x}) t = λx . u ∧ n > 0 where (R,N ,T) = RNTJuKn−1
(R, (N ∪T) − {x},∅) t = λx . u ∧ n = 0 where (R,N ,T) = RNTJuKNAu (closure)(⋃h

i=1 Ri ∪ { f1, . . . , fh},⋃h
i=1 Ni − { f1, . . . , fh},⋃h
i=1Ti − { f1, . . . , fh}

) t = fix (fi := ti)i=1...h for fj ∧

n = NAt ∧
(⋃h

i=1 Ni ∩ { f1, . . . , fh} = ∅
)

where (Ri ,Ni ,Ti) = RNTJtiKNAti(⋃h
i=1 Ri ,⋃h
i=1(Ni ∪Ti) − { f1, . . . , fh},

∅
) t = fix (fi := ti)i=1...h for fj ∧ (real function, maybe closure)

¬(n = NAt ∧
(⋃h

i=1 Ni ∩ { f1, . . . , fh} = ∅
)
)

where (Ri ,Ni ,Ti) = RNTJtiKNAti
Note:
• NAt is the number of arguments of t : NAt =m if t : T1 → · · · → Tm → T0 and T0 is an inductive type.
• The variables in t are unique. Codegen uses de Bruijn’s indexes for N and T ; the variables renamed by Section 4.8 for R.

Figure 10. Detection of tail recursive fixpoint bounded functions.

static nat pow3(nat v1_x) {

nat v2_n; nat v3_n; nat v4_n; nat v5_n;

v2_n = O();

v3_n = S(v2_n);

v4_n = mul(v1_x, v3_n);

v5_n = mul(v1_x, v4_n);

return mul(v1_x, v5_n);

}

static nat f(nat v1_x, nat v2_y) {

nat v3_n; nat v4_n;

v3_n = pow3(v1_x);

v4_n = pow3(v2_y);

return add(v3_n, v4_n);

}

Figure 11. pow3 and f generated by Codegen.

typedef uint64_t nat;

#define O() 0

#define S(n) ((n)+1)

#define add(x,y) ((x) + (y))

#define mul(x,y) ((x) * (y))

Figure 12. nat implementation using uint64_t.

We can monomorphize rev by the convertible transforma-
tions as Figure 16. s_rev_bool is a monomorphic function
without type arguments.

Codegen generates a C function as Figure 17 for it. This
function depends on the implementation of bool type (bool
type), list bool type (list_bool type; lb_nil and lb_cons

for constructors; lb_is_nil, lb_head, and lb_tail for match-
expression implementation), and the implementation of app
(++ operator) for list bool type (app_bool). See Appendix F
for details.

23

Coq to C Translation with Partial Evaluation PEPM ’21, January 18–19, 2021, Virtual, Denmark

Fixpoint sprintf_type (fmt : string) : Type := match fmt with

| EmptyString ⇒ buffer

| String "%"%char (String "d"%char rest) ⇒ nat → sprintf_type rest

| String "%"%char (String "b"%char rest) ⇒ bool → sprintf_type rest

| String "%"%char (String "s"%char rest) ⇒ string → sprintf_type rest

| String "%"%char (String _ rest) ⇒ sprintf_type rest

| String "%"%char EmptyString ⇒ buffer

| String _ rest ⇒ sprintf_type rest end.

Fixpoint sprintf (buf : buffer) (fmt : string) : sprintf_type fmt := match fmt return sprintf_type fmt with

| EmptyString ⇒ buf

| String "%"%char (String "d"%char rest) ⇒ fun (n : nat) ⇒ sprintf (buf_addnat buf n) rest

| String "%"%char (String "b"%char rest) ⇒ fun (b : bool) ⇒ sprintf (buf_addbool buf b) rest

| String "%"%char (String "s"%char rest) ⇒ fun (s : string) ⇒ sprintf (buf_addstr buf s) rest

| String "%"%char (String ch rest) ⇒ sprintf (buf_addch (buf_addch buf "%") ch) rest

| String "%"%char EmptyString ⇒ buf_addch buf "%"%char

| String ch rest ⇒ sprintf (buf_addch buf ch) rest end.

Figure 13. sprintf definition using dependent type.

Definition s_sprintf_x_eq_nat v1_buf v2_n :=

let v3_b := false in let v4_b := false in let v5_b := false in let v6_b := true in

let v7_b := true in let v8_b := true in let v9_b := true in let v10_b := false in

let v11_a := Ascii v3_b v4_b v5_b v6_b v7_b v8_b v9_b v10_b in

let v12_b := true in let v13_b := false in let v14_b := true in let v15_b := true in

let v16_b := true in let v17_b := true in let v18_b := false in let v19_b := false in

let v20_a := Ascii v12_b v13_b v14_b v15_b v16_b v17_b v18_b v19_b in

let v21_b := buf_addch v1_buf v11_a in let v22_b := buf_addch v21_b v20_a in

let v23_b := buf_addnat v22_b v2_n in v23_b

• Ascii is the constructor of ascii type defined in the standard library of Coq.
• v11_a and v20_a are the characters "x" and "=" (0x78 and 0x3d in ASCII).

Figure 14. sprintf specialized with respect to the format string "x=%d".

typedef unsigned char ascii;

#define Ascii(b0,b1,b2,b3,b4,b5,b6,b7) \

((b0) | (b1) << 1 | (b2) << 2 | (b3) << 3 | (b4) << 4 | (b5) << 5 | (b6) << 6 | (b7) << 7)

static buffer sprintf_x_eq_nat(buffer v1_buf, nat v2_n) {

bool v3_b; bool v4_b; bool v5_b; bool v6_b; bool v7_b; bool v8_b; bool v9_b; bool v10_b; ascii v11_a;

bool v12_b; bool v13_b; bool v14_b; bool v15_b; bool v16_b; bool v17_b; bool v18_b; bool v19_b; ascii v20_a;

buffer v21_b; buffer v22_b; buffer v23_b;

v3_b = false; v4_b = false; v5_b = false; v6_b = true; v7_b = true; v8_b = true; v9_b = true; v10_b = false;

v11_a = Ascii(v3_b, v4_b, v5_b, v6_b, v7_b, v8_b, v9_b, v10_b);

v12_b = true; v13_b = false; v14_b = true; v15_b = true; v16_b = true; v17_b = true;

v18_b = false; v19_b = false; v20_a = Ascii(v12_b, v13_b, v14_b, v15_b, v16_b, v17_b, v18_b, v19_b);

v21_b = buf_addch(v1_buf, v11_a); v22_b = buf_addch(v21_b, v20_a); v23_b = buf_addnat(v22_b, v2_n);

return v23_b;

}

• ascii type and Ascii macro are a user-defined implementation of ascii type.

Figure 15. C code generation of sprintf specialized with respect to the format string "x=%d".

24

PEPM ’21, January 18–19, 2021, Virtual, Denmark Akira Tanaka

Definition p_rev_bool := rev bool.

Definition s_rev_bool :=

fix rev_bool (v1_l : list bool) : list bool :=

match v1_l with

| nil ⇒ lb_nil

| v2_x :: v3_l_ ⇒

let v4_l := rev_bool v3_l_ in

let v5_l := lb_nil in

let v6_l := lb_cons v2_x v5_l in

p_app_bool v4_l v6_l

end

Figure 16. The monomorphized rev function.

static list_bool rev_bool(list_bool v1_l)

{ bool v2_x; list_bool v3_l_; list_bool v4_l;

list_bool v5_l; list_bool v6_l;

switch (lb_is_nil(v1_l))

{ default: return lb_nil;

case 0: v2_x = lb_head(v1_l);

v3_l_ = lb_tail(v1_l);

v4_l = rev_bool(v3_l_);

v5_l = lb_nil;

v6_l = lb_cons(v2_x, v5_l);

return app_bool(v4_l, v6_l);

} }

Figure 17. Generated C code for rev bool.

6.4 Dependent Type Elimination of sprintf
Gallina can use dependent types to define functions which
type depends on (non-type) arguments. For example, sprintf
in Figure 13 is a function that the second argument fmt de-
fines types of subsequent arguments. The types of subse-
quent arguments are computed by sprintf_type.
Codegen can specialize sprintf function to eliminate de-

pendent types. Codegen specializes sprintf with respect to
the format string "x=%d" as in Figure 14. The result does not
contain dependent types. The result is very long because
all bits of all characters in the format string are bound by
variables. Figure 15 shows the C function generated for the
specialized sprintf function.

sprintf takes a buffer as the first argument and returns
a buffer that formatted string is appended. buffer type is
expected to be declared as linear and the buf_addch function
modifies the buffer destructively. See Appendix G for details.

7 Related Work
The Extraction plugin [6] is a standard plugin of Coq. It trans-
lates Gallina to OCaml, Haskell, and Scheme. It translates
one Gallina function to one function in a target language and

has no feature to specialize functions. When a Gallina func-
tion uses a dependent type which is not typable in OCaml,
Obj.magic is used. This requires a uniform data represen-
tation where all values can be represented by a single type
(single word, typically) at run time. Codegen does not have
this requirement and any specific representation is usable
for each inductive type.
CertiCoq [1] and Œuf [7] are compilers for Gallina to

generate executable code using CompCert [5]. They use a
uniform data representation and have no specialization.

A-normal form [4], K-normal form [2], and our V-normal
form restricts application arguments as variables. They also
restrict condition expressions as variables. A-normal form
prohibits a let-in and conditional expression in a let-in bind-
ing but K-normal form and V-normal form permit it. A-
normal form restricts function position with values (con-
stant, variable, lambda abstraction) and primitive operations.
K-normal form restricts function position with variables
(including letrec-bounded functions). V-normal form per-
mits in function position any V-normal term including let-in,
conditional expression, and fixpoint. This permissibility of
V-normal form is important to represent a loop using an
application which function position is a fixpoint.

Continuation Passing Style (CPS) is another choice for an
intermediate language of compilers. CPS and V-normal form
restricts arguments as variables. The naive CPS translation
produces many administrative redexes that can be reduced
at compile time [3]. Our V-reduction restricts arguments a
term as variables and S-reduction simplifies the term. The
difference between them is V-reduction does not introduce
extra constructs if an argument is already a variable and S-
reduction reduces redexes not only administrative redexes.

8 Conclusion
We described that conversion rules-based partial evaluation
is possible and its result is easily verifiable in Coq. The partial
evaluation is usable for monomorphization and dependent
type elimination. We formalized the partial evaluation as
reductions over a subset of Gallina term, V-normal form.

Codegen implements the partial evaluation and generates
C functions. We defined several transformations to make
a result of the partial evaluation close to C to ease C code
generation. These transformations are also convertible as
the partial evaluation and its result is easily verifiable.
The C code generation in Codegen guarantees tail recur-

sion elimination. It eliminates tail recursion in a tail position
and also eliminates tail recursion in a non-tail position if
possible.

Acknowledgments
This research was partially supported by the JSPS Bilateral
Joint Research (Number: 20203001)/Inria AYAME Program
Project FLAVOR.

25

Coq to C Translation with Partial Evaluation PEPM ’21, January 18–19, 2021, Virtual, Denmark

A Summary of Solutions to the Gaps
between Gallina and C
• Gallina has type polymorphism, but C does not.
→ Codegen uses partial evaluation to eliminate type
polymorphism if possible.
• Gallina has dependent types, but C does not.
→ Codegen uses partial evaluation to eliminate depen-
dent types if possible.
• Gallina can use any evaluation strategy, but C is strict.
→ Codegen applies the strict evaluation strategy to
Gallina terms.
• Gallina uses curried functions, but C does not.
→ Codegen applies the semantics that evaluates a
function body after all arguments are given.
• Gallina has first-class functions, but C does not.
→ We have a plan to implement restricted closures
(downward funarg).
• Gallina’s data types (such as Peano’s naturals defined
as an inductive type) are suitable for proof but its naive
implementation is too inefficient. C has efficient data
types such as 64 bit integer.
→ Codegen is data representation agnostic. A user can
customize the implementation of inductive types.
• All Gallina programs terminate but C does not.
→ Our target is library functions and most of them
terminate.
• Gallina uses only immutable values but C uses mutable
values.
→ Local variables are modifiable at tail recursive calls
which are translated to assignments and goto. Also,
Codegen has a linearity checker for destructive up-
dates on heap structures safely. It checks the linearity
of variables of user-specified types: one variable is used
exactly once. It guarantees that destructive update is
invisible from Gallina program.
• Gallina does not require to release memory but C re-
quires.
→ The linearity checker guarantees to consume a lin-
ear variable. It can be used to force a user to invoke a
memory freeing function.
• Gallina does not have a loop, but C does.
→ Codegen implements reliable tail recursion elimi-
nation.

B Details of Argument Completion
Figure 18 explains the detail of argument completion.

C Formalized C Variable Allocation
Figure 19 and Figure 20 formalizes C variable allocation. Fig-
ure 19 defines the syntax of a mapping from Gallina variables
to C variables. Figure 20 generates a variable mapping for a
Gallina term.

D The Gallina Subset for C Code
Generation

Our C code generator can generate a C function if E[] ⊢f t .
Figure 21 defines E[Γ] ⊢f t and E[Γ] ⊢b t . E[Γ] ⊢f t determines
that t is valid function for our C code generator. E[Γ] ⊢b t
determines that t is valid body for our C code generator.

E Top-Level C Function Generation
Figure 22, Figure 23, and Figure 24 explains the top-level
function generation.
Figure 22 generates C definitions for a Gallina function

that needs multiple C functions. Figure 23 generates a C func-
tion for a Gallina function that needs only one C function.
Figure 24 chooses them. Assuming a Gallina function c is de-
fined as Definition c := t , it needs multiple functions when
a function bounded by a fixpoint in t is called as a function
(not goto) and c itself is not usable to call the function.

For example, half function defined as follows is mutually
defined with uphalf function. half invokes uphalf in a tail
position but uphalf invokes half in a non-tail position.

Definition half :=

fix half n :=

match n with O ⇒ O | S m ⇒ uphalf m end

with uphalf n :=

match n with O ⇒ O | S m ⇒ S (half m) end

for half.

Codegen generates half as a single function that contains
the bodies of both functions. This is because all recursive
calls are translatable to goto or a function call to the top-
level function (half): half invokes uphalf using goto; uphalf
invokes half using a usual function call.

static nat half(nat v1_n) {

nat v2_m, v3_n, v4_m, v5_n;

switch (v1_n) {

case 0: return 0;

default: v2_m = pred(v1_n);

v3_n = v2_m;

goto entry_uphalf;

}

entry_uphalf:

switch (v3_n) {

case 0: return 0;

default: v4_m = pred(v3_n);

v5_n = half(v4_m);

return succ(v5_n);

}

}

26

PEPM ’21, January 18–19, 2021, Virtual, Denmark Akira Tanaka

• FJtK considers t to be a top-level function or a closure-generating expression. F transforms t to be a nested abstraction
expression that takes all arguments. Fixpoint expressions are allowed outside or between the abstractions.
• BRJtKm,q transforms a branch of a match expression into a nested abstraction expression that takes constructor
members. Fixpoint expressions are not allowed.
• EJt /x1 . . . xpKq is a term convertible with t x1 . . . xp that does not contain a partial application. EJt /x1 . . . xpKq
traverses t while tracking the arguments for t to find closure-generating expressions. The number of arguments given to
t is p + q. The first p arguments are x1 . . . xp and they can be the argument of beta-var redex. The last q arguments
cannot be the argument of beta-var redex.

FJtK =


λx . FJuK t = λx . u

fix (fi := FJtiK)i=1...h for fj t = fix (fi := ti)i=1...h for fj

λx1 . . . λxm . EJt /x1 . . . xmK0 otherwise (eta expansion)
where t : T1 → · · · → Tm → T0

T0 is an inductive type
x1 . . . xm are fresh variables

BRJtKm,q =


EJt / Kq m = 0
λx . BRJuKm−1,q m > 0 ∧ t = λx . u

λx1 . . . λxm . EJt /x1 . . . xmKq otherwise (eta expansion)
where x1 . . . xm are fresh variables

EJt /x1 . . . xpKq =



x t = x ∧ p = q = 0
x x1 . . . xp t = x ∧ ¬(p = q = 0) ∧ r = 0
FJx x1 . . . xpK t = x ∧ ¬(p = q = 0) ∧ r > 0
t x1 . . . xp (t = c ∨ t = C) ∧ r = 0
FJt x1 . . . xpK (t = c ∨ t = C) ∧ r > 0
FJtK t = λx . u ∧ p = q = 0
EJu{x/x1} /x2 . . . xpKq t = λx . u ∧ p > 0 ∧ r = 0 (beta-var)
λx . EJu / Kp+q−1 t = λx . u ∧ ((p = 0 ∧ q > 0) ∨ r > 0)
EJu /x0 x1 . . . xpKq t = u x0

let x := EJt1 / K0 in EJt2 /x1 . . . xpKq t = let x := t1 in t2 (zeta-app)
match x with (Ci ⇒ BRJtiKNMCi ,p+q)i=1...h end x1 . . . xp t = match x with (Ci ⇒ ti)i=1...h end

(fix (fi := FJtiK)i=1...h for fj) x1 . . . xp t = fix (fi := ti)i=1...h for fj

where t : T1 → · · · → Tp → Tp+1 → · · · → Tp+q → Tp+q+1 → · · · → Tp+q+r → T0

T0 is an inductive type
Note: This transformation assumes t is not dependently typed: no type terms and no dependent match-expressions.

Figure 18. Argument completion.

x : Gallina variable
v : C variable

V = empty | x 7→ v | V ;V

Figure 19. Variable mapping from Gallina to C.

F list bool Implementation
list bool type can be implemented in C as Figure 25. This
implementation uses malloc() but not free(). Thus a con-
servative GC is required.

G buffer Implementation
buffer type can be implemented in C as Figure 26. unit type
is also implemented.

make_buffer allocates a buffer, buf_addch adds a character
to the buffer destructively, and free_buffer deallocates the
buffer.

buf_addch and free_buffer have side effects but it is not
visible from Gallina as far as buffer type is used linearly.
Codegen causes an error for a non-linear use of buffer type
variables when buffer type is declared as linear.

27

Coq to C Translation with Partial Evaluation PEPM ’21, January 18–19, 2021, Virtual, Denmark

CVJt /x1 . . . xnKV is the variable mapping of the variables declared in t .
x1 . . . xn are arguments for t . V is the variable mapping for variables declared outside.

CVJt /x1 . . . xnKV =



empty t = x ∨ t = c ∨ t = C ∨ t = T

CVJu / KV ;M ;M t = λx . u ∧ n = 0 whereM = x 7→ v

CVJu /x2 . . . xnKV ;M ;M t = λx . u ∧ n > 0 whereM = x 7→ V (x1)

CVJu /x0 x1 . . . xnKV t = u x0

CVJt1 / KV ; CVJt2 /x1 . . . xnKV ;M ;M t = let x := t1 in t2 whereM = x 7→ v

(CVJt1 /x1 . . . xnKV ;M1 ; . . . ;
CVJth /x1 . . . xnKV ;Mh ;
M1; . . . ;Mh)

t = match x with (Ci ⇒ λyi1 . . . λyi NMCi
. ti)i=1...h end

whereMi = yi1 7→ vi1; . . . ;yi NMCi
7→ vi NMCi

CVJt1 / KV ;M ; . . . ; CVJth / KV ;M ;M t = fix (fi := ti)i=1...h for fj
whereM = f1 7→ v1; . . . ; fh 7→ vh

where v,vi ,vi j are fresh C variables
Note: We consider Gallina variables unique.

Figure 20. C variable allocation.

E[Γ] ⊢b x E[Γ] ⊢b c E[Γ] ⊢b C

E[Γ] ⊢b t E[Γ] ⊢ x : T T is a non-dependent inductive type
E[Γ] ⊢b t x

E[Γ] ⊢b t E[Γ :: (x := t :T)] ⊢b u T is a non-dependent inductive type
E[Γ] ⊢b let x := t : T in u

E[Γ] ⊢ x : T T is a non-dependent inductive type with p parameters: I u1 . . .up
E[] ⊢ Ci u1 . . .up : Ti1 → · · · → Ti NMCi

→ T Ti j are non-dependent inductive types
E[Γ :: (yi1 :Ti1) :: · · · :: (yi NMCi

:Ti NMCi
)] ⊢b ti

E[Γ] ⊢b match x with (Ci ⇒ λyi1 . . . λyi NMCi
. ti)i=1...h end

E[Γ :: (x :T)] ⊢b t T is a non-dependent inductive type
E[Γ] ⊢b λx :T . t

E[Γ] ⊢f fix (fi : Ti := ti)i=1...h for fj

E[Γ] ⊢b fix (fi : Ti := ti)i=1...h for fj

E[Γ] ⊢ t : T T is a non-dependent inductive type E[Γ] ⊢b t

E[Γ] ⊢f t

E[Γ :: (x :T)] ⊢f t T is a non-dependent inductive type
E[Γ] ⊢f λx :T . t

E[Γ :: (f1 :T1) :: · · · :: (fh :Th)] ⊢f ti
E[Γ] ⊢f fix (fi : Ti := ti)i=1...h for fj

Figure 21. The Gallina subset for C code generation.

28

PEPM ’21, January 18–19, 2021, Virtual, Denmark Akira Tanaka

GENFUNMJcK translates the function (constant) c with one or more auxiliary functions. We assume c is defined as
Definition c := t . The auxiliary functions f1 . . . fn are fixpoint bounded functions in t which are invoked as functions. We
assume the types of them:

c : T01 → · · · → T0m0 → T00

fi : Ti1 → · · · → Timi → Ti0 i = 1 . . .n

where Ti0 are inductive types (i = 0 . . .n)
The formal arguments of c are x01 . . . x0m0 = fvarsJtK and the formal arguments of fi are xi1 . . . ximi = fvars′JfiK.
fi invocation in C needs extra arguments, yi1 : Ui1 . . .yioi : Uioi , addition to the actual arguments in Gallina application
because the free variables of the fixpoint should also be passed. If the free variables contain a function bounded by an outer
fixpoint, the function itself is not passed but the free variables of the outer fixpoint are also passed. We iterate it until no
fixpoint functions.

GENFUNMJcK = “enum_entriesJcK arg_structdefsJcK forward_declJcK entry_functionsJcK body_functionJcK”

enum_entriesJcK = “enum enum_func_c {func_c,func_f1, . . . ,func_fn};”
arg_structdefsJcK = “main_structdefJcK aux_structdefJcK1 . . . aux_structdefJcKn”
main_structdefJcK = “struct arg_c {T01 arg1; . . .T0m0 argm0; };”
aux_structdefJcKi = “struct arg_fi {Ui1 outer1; . . .Uioi outeroi;Ti1 arg1; . . .Timi argmi; };”
forward_declJcK = “static void body_function_c(enum enum_func_c g,void *arg,void *ret);”
entry_functionsJcK = “main_functionJcK aux_functionJcK1 . . . aux_functionJcKn”

main_functionJcK = “static T00 c(T01 x01, . . . ,T0m0 x0m0) {

struct arg_c arg = {x01, . . . ,x0m0}; T00 ret;

body_function_c(func_c,&arg,&ret);return ret;

}”

aux_functionJcKi = “static Ti0 fi(Ui1 yi1, . . . ,Uioi yioi ,Ti1 xi1, . . . ,Timi ximi) {

struct arg_fi arg = {yi1, . . . ,yioi ,xi1, . . . ,ximi }; Ti0 ret;

body_function_c(func_fi,&arg,&ret); return ret;

}”

body_functionJcK = “static void body_function_c(enum enum_func_c g,void *arg,void *ret) {

decls

switch (g) { aux_caseJcK1 . . . aux_caseJcKn main_caseJcK }

GENBODYBK JtK
}”

aux_caseJcKi = “case func_fi:
yi1 = ((struct arg_fi *)arg)->outer1; . . . ; yioi = ((struct arg_fi *)arg)->outeroi;
xi1 = ((struct arg_fi *)arg)->arg1; . . . ; ximi = ((struct arg_fi *)arg)->argmi;

goto entry_fi;”

main_caseJcK = “default:;
x01 = ((struct arg_c *)arg)->arg1; . . . ; x0m0 = ((struct arg_c *)arg)->argm0;”

where decls is local variable declarations for variables used in GENBODYBK JtK.
K(e) = “*(T00*)ret = e;return;”

Figure 22. Translation for a top-level function which is translated to multiple C functions.

29

Coq to C Translation with Partial Evaluation PEPM ’21, January 18–19, 2021, Virtual, Denmark

GENFUNSJcK translates the function (constant) c to a single C function.

GENFUNSJcK = “staticT0 c(fargs′JtK) { decls GENBODYBK JtK }”
where c is defined as Definition c : T1 → · · · → Tn → T0 := t .

T0 is an inductive type

decls is local variable declarations for variables used in GENBODYBK JtK excluding fargsJtK.
K(e) = “return e;”

fargsJtK =


“T x, fargsJuK” t = λx :T . u
fargsJtjK t = fix (fi := ti)i=1...h for fj

“” otherwise
fargs′JtK = fargsJtK without the trailing comma

Figure 23. Translation for a top-level function which is translated to a single C function.

GENFUNJcK =

{
GENFUNMJcK t needs multiple functions
GENFUNSJcK otherwise

where c is defined as Definition c := t .

Figure 24. Translation for top-level function.

#include <stdlib.h>

#include <stdbool.h> /* bool, true, false */

struct list_bool_tag {

bool head;

struct list_bool_tag *tail;

};

typedef struct list_bool_tag *list_bool;

#define lb_nil NULL

static list_bool lb_cons(bool h, list_bool t) {

list_bool c;

if ((c = malloc(sizeof(*c))) == NULL)

abort();

c→head = h;

c→tail = t;

return c;

}

#define lb_is_nil(l) ((l) == lb_nil)

#define lb_head(l) ((l)→head)

#define lb_tail(l) ((l)→tail)

Figure 25. list bool implementation in C.

typedef bool unit; static const unit tt = true;

typedef struct {

unsigned char *mem; size_t len; size_t max;

} *buffer;

buffer make_buffer(nat max) {

buffer buf;

if ((buf = malloc(sizeof(*buf))) == NULL) abort();

if (max == 0) max = 16; /* avoid malloc(0) */

if ((buf→mem = malloc(max)) == NULL) abort();

buf→len = 0; buf→max = max;

return buf;

}

buffer buf_addch(buffer buf, unsigned char c) {

if (buf→max <= buf→len) {

unsigned char *mem; size_t max = buf→max * 2;

if ((mem = realloc(buf→mem, max)) == NULL)

abort();

buf→mem = mem; buf→max = max;

}

buf→mem[buf→len++] = c;

return buf;

}

unit free_buffer(buffer buf) {

free(buf→mem); free(buf);

return tt;

}

Figure 26. buffer implementation in C.

30

PEPM ’21, January 18–19, 2021, Virtual, Denmark Akira Tanaka

References
[1] Abhishek Anand, Andrew Appel, Greg Morrisett, Zoe

Paraskevopoulou, Randy Pollack, Olivier Savary Belanger, Matthieu
Sozeau, and Matthew Weaver. 2017. CertiCoq: A verified compiler for
Coq. In The Third International Workshop on Coq for Programming
Languages (CoqPL).

[2] Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. 1996. From re-
gion inference to von Neumann machines via region representation
inference. In Proceedings of the 23rd ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages. 171–183. https:
//doi.org/10.1145/237721.237771

[3] Olivier Danvy and Lasse R Nielsen. 2005. CPS transformation of beta-
redexes. Inform. Process. Lett. 94, 5 (2005), 217–224. https://doi.org/10.
1016/j.ipl.2005.02.002

[4] Cormac Flanagan, Amr Sabry, Bruce F Duba, and Matthias Felleisen.
1993. The essence of compiling with continuations. In Proceedings of
the ACM SIGPLAN 1993 conference on Programming language design
and implementation. 237–247. https://doi.org/10.1145/155090.155113

[5] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun.
ACM 52, 7 (2009), 107–115. https://doi.org/10.1145/1538788.1538814

[6] Pierre Letouzey. 2003. A New Extraction for Coq. In Types for Proofs
and Programs, Second International Workshop, TYPES 2002, Berg en Dal,
The Netherlands, April 24-28, 2002 (Lecture Notes in Computer Science,
Vol. 2646), Herman Geuvers and Freek Wiedijk (Eds.). Springer-Verlag.
https://doi.org/10.1007/3-540-39185-1_12

[7] Eric Mullen, Stuart Pernsteiner, James R Wilcox, Zachary Tatlock, and
Dan Grossman. 2018. Œuf: minimizing the Coq extraction TCB. In Pro-
ceedings of the 7th ACM SIGPLAN International Conference on Certified
Programs and Proofs. 172–185. https://doi.org/10.1145/3167089

[8] Gonzalo Navarro. 2016. Compact data structures: A practical ap-
proach. Cambridge University Press. https://doi.org/10.1017/
CBO9781316588284

[9] Akira Tanaka, Reynald Affeldt, and Jacques Garrigue. 2018. Safe low-
level code generation in Coq using monomorphization and monad-
ification. Journal of Information Processing 26 (2018), 54–72. https:
//doi.org/10.2197/ipsjjip.26.54

[10] The Coq Development Team. 2020. The Coq Proof Assistant. https:
//coq.inria.fr/.

[11] The Coq Development Team. 2020. The Coq reference manual: Release
8.12.0. (2020).

31

https://doi.org/10.1145/237721.237771
https://doi.org/10.1145/237721.237771
https://doi.org/10.1016/j.ipl.2005.02.002
https://doi.org/10.1016/j.ipl.2005.02.002
https://doi.org/10.1145/155090.155113
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1007/3-540-39185-1_12
https://doi.org/10.1145/3167089
https://doi.org/10.1017/CBO9781316588284
https://doi.org/10.1017/CBO9781316588284
https://doi.org/10.2197/ipsjjip.26.54
https://doi.org/10.2197/ipsjjip.26.54
https://coq.inria.fr/
https://coq.inria.fr/

	Abstract
	1 Introduction
	2 Partial Evaluation with Stock Coq?
	2.1 Reduction of pow
	2.2 Verification of !pow3!

	3 Translation from Gallina to C
	4 Convertible Transformations
	4.1 Computation Size
	4.2 Inlining
	4.3 V-Normalization
	4.4 S-Normalization
	4.5 Call Site Replacement
	4.6 Unused let-in Deletion
	4.7 Argument Completion
	4.8 C Variable Allocation
	4.9 Well-Typedness of the Transformations

	5 C Code Generation
	6 Translation Examples
	6.1 Convertible Transformations without Duplicating Computations
	6.2 Specialized Function Application Generation
	6.3 Monomorphization of List.rev
	6.4 Dependent Type Elimination of sprintf

	7 Related Work
	8 Conclusion
	Acknowledgments
	A Summary of Solutions to the Gaps between Gallina and C
	B Details of Argument Completion
	C Formalized C Variable Allocation
	D The Gallina Subset for C Code Generation
	E Top-Level C Function Generation
	F list bool Implementation
	G buffer Implementation
	References

