Language and Library API Design for Usability of Ruby

Usability over Simplicity

Akira Tanaka
National Institute of Advanced Industrial Science and Technology (AIST)

akr@fsij.org

Abstract

The Ruby programming language is designed for easy use.
The usability is an important feature since the productivity
of programmers depends on it. This paper describes that the
design method obtained through the experiences of devel-
oping Ruby. The design method can be used to make other
languages and libraries easy to use.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Object-oriented languages

General Terms Programming Language, Library, Usabil-
ity

Keywords Syntax, Library, API, Usability, Simplicity,

1. Introduction

There is no formal way to establish easy-to-use program-
ming languages and library APIs. But the easiness is an im-
portant factor for programmers’ productivity.

Ruby is the object oriented programming language cre-
ated by Yukihiro Matsumoto. It is intended to be easy to use.
I, Akira Tanaka, feels it has good usability. However it is not
simple. It has complex behavior. It is difficult to explain why
it is easy.

Basically, the design of Ruby puts importance on good
properties of programming languages: succinctness, good
naming convention, etc[2]. However, some of Ruby’s behav-
iors violate such good properties to improve the usability.
The concrete design method for such behaviors is not well
explained.

For example, these two expressions has the different
meaning.

[Copyright notice will appear here once ’preprint’ option is removed.]

Language and Library API Design for Usability of Ruby

® obj.meth + var

® obj.meth +var

The difference of this example is a space between +
and var. The former has a space, the latter not. In the
former, meth is a method call without an argument and + is
a binary operator: obj.meth() + var. In the later, meth is
a method call with an argument and + is a unary operator:
obj.meth(+var). The space resolves such an ambiguity
caused by the fact that the parentheses of a method call is
not mandatory.

Here, the semantics depends on white spaces. Such a
design is curious form a view point of computer scientists.
It is not simple but complex, against tradition, and hard to
understand.

But such a curious behavior does realize the usability. By
understanding the reason why Ruby adopts it, we can get an
insight into the usability of programming languages.

This paper constructed as follows to explain a design
method for programming languages and library APIs to be
good usability. It is obtained from experiences of Ruby de-
veloper (committer).

¢ Although Ruby is designed to be easy to use, the design
method is not explained concretely (Section 2). The ex-
planation will have following benefits.

= We can make libraries and other languages easy to use
as Ruby.

= We can avoid usability regression when modifying
Ruby.

e The design of Ruby focus usability (Section 3). We don’t
mind complexity of the design if it realize usability. In
general, simplicity is good property but it is not the pri-
mary goal of Ruby.

e We design Ruby incrementally to improve usability (Sec-
tion 4). We find flaws of Ruby and fix them. Several is-
sues should be considered for usability:

= How many frequency of the flaw occur?

= What the appropriate design according to the fre-
quency?

1 2009/10/9

= Does the fix prevents other fixes in future?

= If the fix has an incompatibility, how it should be dealt
with?

e We describes future work ((Section 5). We will explain
various techniques for usability used in Ruby as design
patterns (pattern language). Since the techniques are em-
pirical and sometimes conflict, design patterns should be
good format for the explanation. They will accelerate
Ruby design process. We also describes possible tech-
nology to support incremental design.

2. Usability of Ruby

Ruby is designed to be easy to use programming language.
The design policy, such as succinctness, is described briefly
in [2, 3] for language itself and [4] for libraries. But the
description is not enough to put it into practice. Especially
the practice is difficult when usual good properties conflicts
usability.

The difficulty causes several problems:

* When we want to realize the usability similar to Ruby in
other languages and libraries, it is difficult to determine
what behavior should be imitate. We want to ignore the
behavior which doesn’t contribute to the usability. But it
is clear to determine.

* When we want to modify Ruby, it is difficult to consider
the modification will degrade the usability or not.

These problems can be solved by understanding how the
usability of Ruby is implemented.

The examples follows are explained in following sec-
tions.

e optional parenthesis for succinctness and DSL
® blocks for common usages of higher order functions

e shorter names for frequently used methods for succinct-
ness

3. Unusual Design

In this section, we describe the design of Ruby which intend
to be easy to use and violates usual language design.

In usual language design, there are several good prop-
erty: consistency, simplicity, orthogonality, flexibility, suc-
cinctness, intuitiveness, DRY (Don’t Repeat Yourself), good
name, generalness, naturalness, meets programmers’ com-
mon sense, etc. In the design policy of Ruby, they are also
good properties.

However, sometimes Ruby overrides the properties by us-
ability. Le. the design of Ruby prefer usability over the prop-
erties when they conflict. Ruby don’t need consistency in-
cluding rare usage. Ruby don’t need succinctness including
rare usage. Ruby don’t need orthogonality including rare us-
age. Ruby don’t need simplicity including rare usage.

Language and Library API Design for Usability of Ruby

For example, continuation (call/cc) on dynamic typed
languages endorse consistency between arguments and re-
turn value because it pass former to later. This mismatch,
multiple values of arguments v.s. single value of return
value, can be solved by that function call can have multi-
ple return values as Scheme. However continuation is rarely
used in Ruby, the consistency is not important.

The design of Ruby is not intended to simplify the be-
havior. Actually the whole behavior including rare usage is
complex. Some of the complexity is intentional for usability.

In general, simplicity is a good property. It derives many
things from few principles. So programmers don’t need to
memorize many things except the principles. Another benefit
is that simplicity ease programming language research. But
Ruby prefer direct usability over such benefits.

In this section, we describe several examples of Ruby’s
complex design for usability.

3.1 Succinctness over Simplicity

In this section, we explain the example shown in the section
1. The example shows us Ruby depends on a space in a
method call. If we want to choose a simple behavior, the
following can be considered.

¢ make the parenthesis of method call mandatory.

e cven if the parenthesis is optional, define the behavior
regardless of the space.

If the parenthesis is mandatory, the ambiguity of + opera-
tor doesn’t occur. The + of obj.meth () +var is a binary op-
erator. The + of obj .meth (+var) is a unary operator. Also,
the syntax rules can be reduced because we don’t need rules
for the parenthesis omitted.

Even if the parenthesis is optional, the behavior regard-
less of the space simplify the information notification be-
tween the tokenizer and the parser.

We didn’t choose the simple behavior for Ruby. The
reason behind it is succinctness.

There are many situations which don’t cause ambiguities
even without the parenthesis. The method call is not ambigu-
ous if no arguments are given, only one argument is given
and it is a variable, etc. If we require the parenthesis, Ruby
loses succinctness for such situations.

3.2 Intuitiveness over Simplicity

The example in the section 1 also show Ruby’s design pol-
icy which prefer intuitiveness over simplicity. The intuitive-
ness is for average programmers. Although programmers
vary, they have many shared knowledge. For example, there
are common textbooks and the programmers can understand
pseudo code in the textbooks. Programmers who know ap-
plication domain can understand the notation used by the do-
main. So programmers have common intuition in a degree.
The detailed reason are follows.

2 2009/10/9

e DSL

DSL, Domain Specific Language, is a language which
correspond to a target domain. It can represent logic in
the domain intuitively. DSLs are classified as external
DSLs and internal DSLs. An external DSL is an indepen-
dent programming language. An internal DSL is a library
in some programming language. The library provides vo-
cabulary for the domain.

The parenthesis of method call have an impression of
function call. The impression hides the impression of the
domain. So the syntax with optional parenthesis appro-
priate for DSL. It expose the impression of the domain.
So programmers easily sense the logic in the domain.

For example, Ruby has a DSL to manipulate Ruby run-
time. The DSL is constructed by methods to load a li-
brary, define/remove a constant, define/remove a method,
etc. require method loads the library foo as follows:

require ’foo’

require method is used without parenthesis in gen-
eral. This reduces the impression of function call and
programmers consider this as a declaration. Since the
parenthesis is noise in the domain, it increase the cost
to read/write/understand the code. Therefore the syntax
with optional parenthesis avoid the cost.

Proximity

The syntax with optional parenthesis has benefits as
above. However it causes the ambiguity. Ruby uses the
Gestalt law of proximity to resolve the ambiguity. The
law means that near objects are perceived as grouped
together. obj.meth +var is grouped as obj.meth and
+var. Ruby parses the expression as the perception. So
the semantics of the expression is similar to the percep-
tion. This reduces the cost to read/write/understand the
expression.

Utility Methods

The class library of Ruby also prefer usability over sim-
plicity. For example, Array class has push and pop
method. push inserts an element at the end of the ar-
ray. pop deletes an element at the end of the array. Since
the array size is changed dynamically, programmers can
use the array as a stack intuitively.

Such utility methods tends to be increased because
method addition is a major way to introduce a new fea-
ture. So the class tends to have more feature and be more
complex.

These design decision means that we choose usability
over simplicity in Ruby.

Language and Library API Design for Usability of Ruby

3.3 Usage Frequency

The frequency of usage can also be a reason to override
simplicity.

For example, a method name should match the following
regular expression:

[A-Za-z_]1 [0-9A-Za-z_]*[!17]7?

Le. it start with an letter or an underscore, followed by zero
or more digits, letters and underscores, optionally followed
by ! or 7.

This syntax is not simple because the last ! or 7. If we
choose simple syntax, we can consider a syntax without the
last character like C or a syntax with various character in any
position like Scheme.

This complex syntax is chosen to use the naming practice
of Scheme in Ruby. Scheme uses function names which ends
with 7 for predicates and ! for destructive functions. It is just
a convention in Scheme because the syntax is not special for
the usage. On the other hand, Ruby’s syntax is specialized
for the usage. This complexity realize the usage in non-S-
expression language and prevent too cryptic method names.

! is mainly used for destructive methods as Scheme.
However Ruby uses ! only for some of destructive methods.
It is not consistent. This is also because usage frequency.
Since most Ruby programs are imperative style, there are
too many destructive method calls to pay attention. So Ruby
uses ! only for methods valuable to pay attention, such as
there are both destructive and non-destructive method and
programmers carefully choose them.

The big feature of Ruby, block, is also uses usage fre-
quency. Ruby’s block is similar to higher order function in
functional languages. For example, map can be used as fol-
lows in Ruby, Scheme and Haskell.

Ruby: [1, 2, 3].map {Ix| x * 2 }
Scheme: (map (lambda (x) (* x 2)) (1 2 3))
Haskell: map (\x -> x * 2) [1, 2, 3]

Ruby’s map is a method of Array class which takes a
block. In above example, {Ix| x * 2 }isa block.

Ruby’s block is not an expression. The syntax of block
is defined with the syntax of method call. So, a block can
be described only with a method call. The block is passed
to the method as a hidden argument which is separated
from usual arguments. This differs from lambda expression
in functional languages. Scheme and Haskell can describe
lambda expression as an individual expression. It is passed
to map function as a usual argument.

This causes following pros and cons.

pro succinct description because it don’t need keywords
such as lambda.

pro one can terminate the method by break statement in the
block.

con a method can take only one block.

3 2009/10/9

Ruby’s blocks are limited from higher order functions
because only one block can be given for a method. But this is
not a big problem because usage frequency. Since it is rare
that we need to specify two or more functions, the block’s
benefits surpass its problem by the limitation.

The library design also utilize the usage frequency. For
example, Ruby defines p method which is usable anywhere.
It prints arguments for debugging purpose which is easy to
understand for programmers. The method name, p, is incon-
sistent with other methods because it is too short in the sense
of Ruby naming convention. It is intentional because debug
printings are very common. In general, too short names are
incomprehensible and tends to conflict. But p has no such
problem because almost all Ruby programmers knows it.

This kind of naming convention, assigning short names
for features frequently used, are called Huffman coding
which term is borrowed from data compression.[1]

Huffman coding is applied for writing and reading pro-
grams. For writing, shorter and too short names reduces
number of types. However too short names, such as p, is can
be problematic for reading. So too short names should be
used only if it is sure that most programmers have no prob-
lem with reading. p is an example of such name as explained
above. In most case, names can be shorter until single word
which can be understand the meaning by programmers.

Ruby uses the frequency of usage for usability. This
means Ruby focus major usage and don’t focus rare us-
age. This “focus” is implemented in various levels of Ruby:
syntax, semantics and library API.

4. Incremental Design

Ruby is designed to realize the usability using various tech-
niques usability described in section 3. However, we cannot
define the complex behavior at once.

Therefore we need incremental design for usability. The
design should be refined by feedback. Since we cannot find
the best design at beginning, this process is unavoidable. We
must find flaws and fix them.

The "flaw” means a bad usability. The process to improve
the usability is follows.

¢ Find flaw of usability
® Design the fix the flaw

e Deal with the incompatibilities

4.1 Find flaw of usability
At first, we must find flaw to refine the design. There are
several starting point to find it.

e No feature

® Not enough feature

e Feature is available but not easy to use

e Feature is available but difficult to find it

Language and Library API Design for Usability of Ruby

But we don’t provide all features requested in the pro-
gramming language and the standard library. If the flaw
causes a trouble frequently, it is an important problem. If
the flaw is difficult to avoid in an application but easy to fix
in the programming language and the standard library, it is
appropriate to fix by them.

We can estimate the frequency by investigating the sim-
ilar requests in the past. Also, existing programs can be in-
vestigated for a code to avoid the flaw. For example, when
we guess a code snippet is an idiom, single method which
replace the idiom will improve the usability.

Since Ruby is developed in the bazaar model, any Ruby
programmer can find flaws of Ruby. Such flaws are dis-
cussed in the mailing lists. Sometimes flaws are found in
discussion, so open discussion is useful.

The archive of the mailing lists is useful to investigate the
requests in the past. The source code search engines, such as
Google Code, is useful to investigate existing programs. We
can search idioms and other candidates to improve usability
in many programs.

4.2 Design the fix the flaw

In general, there are two or more ways to fix flaw. So we need
to design the fix for better usability. Since incompatibilities
should be avoided, method addition is a good fix in general.
Section 4.3 details about dealing with incompatibilities.

When we add a method, we must define its name and
behavior.

The good method name is a name which is easy to un-
derstand the behavior. However Huffman coding is applied
for methods which is frequently used. So we estimate the
frequently of the method.

If the method is frequently used, it should have a short
name or define as an operator. Since most programmers
knows operators in the language already, operators are eas-
ier to adopt. This happens even if programmers doesn’t sure
precious behavior of the method. They have some expec-
tation on operators and common method names such as
A << B appends A to B, A[B] extract something by B in
A, etc.

However the frequency is just an estimate. It can be fail-
ure. For example, we tends to assign operators to primitives
but primitiveness doesn’t mean it is used frequently. If we
used a too short name or an operator for a feature, we may
have trouble in future. When we find another feature which
should be used more frequently, it is difficult to find a name
shorter than that. If an operator is used, it is very difficult to
find a name easier than the operator. We will need incompat-
ible renaming to preserve Huffman coding.

Therefore short names and operators should be used only
if we are certain that the feature is used frequently. If we
are not certain, a longer name should be used. It doesn’t
causes problems in future. We can alias it with a shorter
name when we are certain. It doesn’t cause incompatibility
because longer names are still usable.

4 2009/10/9

The method should be implemented experimentally to
examine the behavior.

This examination is easy in Ruby because Ruby’s classes
are open. It means we can define new methods in the existing
classes. For example, we can define to_proc method in the
builtin class Symbol as follows:.

class Symbol
def to_proc
lambda {|obj, *args]|
obj.send(self, *args)
3
end
end

The to_proc method is an example which is already
taken by Ruby. The method is experimented by a third party
at first. It is re-implemented in Ruby later. Recent Ruby has
the method by default.

The classes can be bigger because we prefer method
addition. The big classes are useful to try various methods.
If we add a class for new feature, we must create the instance
of the class to try the feature.

The method may have two or more names because shorter
names are defined later. Although this violates minimalism,
Ruby doesn’t intend to be minimum. Perl has a slogan TM-
TOWTDI (There’s More Than One Way To Do It). Ruby
also has similar nature.

4.3 Deal with the incompatibilities

Improving usability may break compatibility. So, we should
consider language and library design without incompatibil-
ity in future improvement.

If we change a programming language and a library,
it can cause incompatibilities. The incompatibilities break
application programs. So they should be avoided if possible.

Various changes can be classified as follows.

e compatible changes

" new syntax

= new class

* new method

= relax method arguments

= define undefined behavior
e incompatible changes

* remove class

= remove method

= restrict method arguments

= change return values

= change side effects

Strictly speaking, the new methods can also conflicts
because applications can add the method by open class.

Language and Library API Design for Usability of Ruby

However they are not big problem in practice because we
don’t use open class extensively. We assume new methods
doesn’t cause incompatibility here.
Since incompatibility should be avoided, we should
choose compatible changes such as method addition.
However several techniques to avoid future incompatibil-
ities in method addition.

e Arguments should be checked strictly. We can add new
features by relax the arguments in future.

e Short names and operators should be used only if we
are certain to they are used frequently. This reduces a
possibility that we cannot find a shorter method name for
methods more frequently used in future.

e Describe undefined behavior explicitly in the manual.
We can add new features by changing and defining the
behavior.

If we really cannot avoid incompatibilities, we can use
following practices to reduce pain for application program-
mers.

¢ Incompatibilities should be introduced when the major
version number is incremented. The programmers can
update the application at a time for each major version.

e Warnings should be generated before incompatibilities
introduced. The warnings notify that the application
doesn’t work well in the next major version.

The incompatible change and its warning can be imple-
mented at a time in Ruby. Ruby has two develop branch:
stable and development. The warning is implemented to the
stable branch. The incompatible change is applied to the de-
velopment branch. The inconsistency between the warning
and the change can be avoided in this style of development.
Also, application programmers can try the development ver-
sion to study the incompatibility.

In Ruby, application can use open class to implement a
new method in an older Ruby which don’t have the method.
For example, to_proc method in Symbol class can be im-
plemented for the older Ruby by the compatibility defini-
tion as follows. Note that :foo.respond_to? :to_proc
returns true if the symbol, : foo, has to_proc method.

if !(:foo.respond_to? :to_proc)
class Symbol
def to_proc
lambda {lobj, *argsl|
obj.send(self, *args)
}
end
end
end

So application can use new methods even in the older
Ruby by defining the methods.

5 2009/10/9

The compatibility definitions can be removed when the
older Ruby is fade out and the application discontinue sup-
port for it. No other code need to be modified at the time.

5. Summary and Future Work

This paper explains Ruby language and library is designed
for usability utilize the usage frequency. The incremental
design process for the usability is also explained.

However the design principle is not popular even in Ruby
community. So, sometimes third party libraries are not easy
to use as Ruby.

The incremental design process is not supported well
by the implementation. There are ideas for mechanism to
support the process.

5.1 Usability of Ruby in Future

It is important to explain the design principle of Ruby to
preserve the usability of Ruby.

There are change requests for Ruby which the main rea-
son is simplicity and doesn’t focus usability. It is possible to
spoil the usability if the request is accepted.

So, it is important to popularize the usability principle.
If the principle is popular, the requests which degrade the
usability will be decreased.

Currently we work on “language patterns” which are de-
sign patterns for designing easy to use languages and li-
braries. It describes DSL, structure by white spaces, etc.

The format of design patterns is appropriate for this kind
of knowledge. It’s because the techniques are rules of thumb.
Sometimes the techniques conflicts each other. For example,
the p method is bad name but the name is supported by
Huffman coding rule. This knowledge is not possible to
formulate as axioms and theorems.

The explanation by the design patterns provides vocabu-
lary to discuss usability of programming languages and li-
braries.

5.2 Incremental Design in Future

If we can reduce problems by incompatibilities, we can
accelerate improvement of the usability of Ruby.

There are several possible mechanisms to reduce the
problems.

Since Ruby is dynamic language, most warnings are gen-
erated at runtime. Some of the warnings inform the appli-
cation will be broken with future Ruby. They are only use-
ful when the application is updated, useless otherwise. Since
many useless warnings hides real warnings, we can’t pro-
duce many warnings for incompatibilities. So, it is useful
that a mechanism which selects warnings to generate. If the
warnings for incompatibilities are not generated in useless
cases, we can add many warnings.

The module mechanism can also be improved for treat-
ing incompatibilities. Since Ruby has open class, method
addition can cause incompatibilities. The incompatibili-
ties can be reduced by name spaces for method names.

Language and Library API Design for Usability of Ruby

We are considering the module systems for method names
such as selector namespace, difference-based modules[5],
classboxes[6], etc. They eases library usability improvement
because an old method and new method can coexist even if
they have same method name.

Acknowledgments

The author make grateful acknowledgment for the valu-
able comments from Yukihiro Matsumoto (matz), Kenichi
Handa, Mikiko Nnishikimi, Satoru Tomura, Yutaka Niibe
(gniibe) and anonymous referees.

References

[1] Larry Wall. Programming is Hard, Let’s Go Scripting... De-
cember 2007, http://wuw.perl.com/1lpt/a/997

[2] Yukihiro Matsumoto. The Power and Philosophy of Ruby.
O’Reilly Open Source Software Convention (OSCON),
July 2003, http://www.rubyist.net/~matz/slides/
oscon2003/

[3] Yukihiro Matsumoto. The World of Code (in Japanese). Nikkei
BP, May 2009, ISBN 978-4-8222-3431-7

[4] Akira Tanaka. open-uri, Easy-to-Use and Extensible Virtual
File System. International Ruby Conference, October 2005,
http://www.a-k-r.org/pub/rubyconf2005-presen. pdf

[5] Yuuji Ichisugi and Akira Tanaka. Difference-Based Modules:
A Class-Independent Module Mechanism Proceedings of the
16th European Conference on Object-Oriented Programming
(ECOOP), pages 62-88, LNCS 2374, 2002.

[6] Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and
Roel Wuyts. Classboxes: Controlling Visibility of Class Exten-
sions. In Computer Languages, Systems and Structures, Volume
31, Number 3-4, pp. 107-126, May 2005.

6 2009/10/9

