

Language and Library API Design
for Usability of Ruby

Akira Tanaka
akr@fsij.org

National Institute of Advanced Industrial Science and Technology (AIST)

Goal

Design good programming language and
library API

● "good" means usability for programmers
● programmers should be able to create a

program more easily

Outline

● Examples of conflicts with usability and the
other good properties of programming
languages and library APIs

● Design Patterns for explaining the policy

Background

● I feel Ruby is comfortable
– I can program my idea frankly

● But there are inconsistencies
● Proposal to fix them tend to be rejected

● Consistency is not the most important policy
● What's the design policy of Ruby?
● I'd like to know the design policy for

comfortable language and library API

Question

● When Ruby ignore consistency for usability?
● How people can study the policy?

Question, Generalized

● When usability should be preferred over
other good language/library properties:
consistency, simplicity, etc?

● When the good properties should be
preferred over usability?

● How we can distinguish them?
● How we can explain this policy?

Inconsistency Example
bang (!) methods

● Method name can end with bang (!) in Ruby
● Bang is used for dangerous methods

Programmers should be careful to use it
Destructive methods in most cases

● This usage of bang is similar to Scheme
● But it is not used consistently in Ruby

Bang is used for some of destructive methods
(not all)

Destructive Methods in Array

● clear

● collect!

● compact!

● concat

● delete

● delete_at

● delete_if

● fill

● flatten!

● insert

● map!

● pop

● push

● reject!

● replace

● reverse!

● shift

● slice!

● sort!

● uniq!

● unshift

Bang (!) Methods Inconsistency

● Method name ends with bang is destructive
● Method name ends without bang is

sometimes destructive

Several people try to fix it

● Proposal for adding bang for all destructive
methods

● Rejected
● Reason:

– Too many destructive methods in Ruby

– Destructive methods are common in imperative
style

– Bang gets attention but programmers cannot pay
attention for too many bangs

– Consistent bang is less useful in Ruby

Consistency v.s. Usability

● If all destructive methods ends with bang,
– [good] easy to remember the method names

– [bad] too many bang is less useful for attention

● Consistency and Usability conflicts here

Complex Design Example
block and lambda

● Ruby has lambda as Scheme
lambda {|x| x + 1 } # (lambda (x) (+ x 1))

● But block is used much more frequently
obj.method(args) { ... }

● Ruby's method call can take a block
array.map {|x| x + 1 }

● Similar to higher order function
(map (lambda (x) (+ x 1)) array)

● {|x| x + 1 } is not an expression but a builtin
syntax for method call

Block violates simplicity

● lambda can be used instead of block
● block is not usable if two or more functions

are passed
● Simpler design: no block. lambda only

Why block?

● There are many usages for method call with
single block

● block is succinct than lambda
– a.map {|x| x + 1 }

– (map (lambda (x) (+ x 1)) a)

● less nestings
● Succinct programs are easy to read and write

(if not too succinct)

Succinctness

● Succinct program is easy to write
– less number of types (or keystrokes)

● Succinct program is easy to read
– less number of program elements

Simplicity v.s. Usability

● If Ruby don't have block,
– [good] syntax and semantics are simplified

– [bad] make programs less succinct

● Simplicity and usability conflicts here

Bad Inconsistency

There are bad inconsistencies in Ruby
● Arguments passing semantics different

between block and method
– Almost fixed in Ruby 1.9

● "utc" and "local" method in Time class is
destructive
– hard to fix because incompatibility

● etc.

How to cope with the conflicts

● Resolve conflicts if possible
● Prefer one which is more important
● Decide it objectively if possible
● Decide it subjectively, or
● Don't decide until possible

Hard to Formalize the Decision

● No absolute axiom/theory
● Good programmers do it implicitly
● Somewhat subjective

How to explain the
decision method

● Various techniques are used for usability
● We should compare advantage and

disadvantage of the technique
● This is difficult to be quantitative
● Design pattens (pattern language) would be

a good way to describe them

Possible Pattern
Optimize for Common Usage

● bang-methods and block concentrates
common usage

● How to apply:
– Guess common usage

● imperative style
● higher order function which takes single function

– Optimize for that
● bang methods
● block

Possible Pattern
Incremental Design

● We may not certain about common usage
– Imperative style is really common?

– Single block is really useful in most case?

● Find common usage in experience
– idiom

– code search

– etc.

● Avoid future incompatibilities
– Method name should explain the behavior to

avoid future method renaming

Other possible patterns

● Fewer class/arguments
● Feature-rich (many methods) class than

compact class
● DRY (Don't Repeat Yourself)
● Delay decisions
● Respect programmer's knowledge
● Concentrate to base level programming over

meta programming
● DSL (Domain Specific Languages)
● White spaces for structures

Summary

● Usability can conflict with the other good
properties

● There are various techniques for usability
– optimize for common usages

– incremental design

– etc.

● Design patterns would be good to describe
the techniques

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

