Language and Library APl Design
for Usability of Ruby

Akira Tanaka

akr@fsij.org
National Institute of Advanced Industrial Science and Technology (AIST)

Goal

Design good programming language and
library API

» "good" means usability for programmers

 programmers should be able to create a
program more easily

Outline

 Examples of conflicts with usability and the
other good properties of programming
anguages and library APIs

* Design Patterns for explaining the policy

Background

| feel Ruby is comfortable
- | can program my idea frankly
 But there are inconsistencies

* Proposal to fix them tend to be rejected

« Consistency is not the most important policy
 What's the design policy of Ruby?

 |'d like to know the design policy for
comfortable language and library API

Question

 When Ruby ignore consistency for usability?
« How people can study the policy?

Question, Generalized

 When usability should be preferred over
other good language/library properties:
consistency, simplicity, etc?

 When the good properties should be
oreferred over usability?

« How we can distinguish them?

« How we can explain this policy?

Inconsistency Example
bang (!) methods

Method name can end with bang (!) in Ruby

Bang is used for dangerous methods
Programmers should be careful to use it
Destructive methods in most cases

his usage of bang is similar to Scheme

But it is not used consistently in Ruby
Bang is used for some of destructive methods
(not all)

Destructive Methods in Array

clear * pop
collect! * push
compact! * reject!
concat * replace
delete * reverse!
delete_at e shift
delete_if * slice!
fill ¢ sort!
flatten! e uniq!
insert e unshift

map!

Bang (!) Methods Inconsistency

« Method name ends with bang is destructive
« Method name ends without bang is

SOoOm et| M ES destructive

Several people try to fix it

* Proposal for adding bang for all destructive
methods

* Rejected

e Reason:

- Too many destructive methods in Ruby

- Destructive methods are common in imperative
style

- Bang gets attention but programmers cannot pay
attention for too many bangs

— Consistent bang is less useful in Ruby

Consistency v.s. Usability

o If all destructive methods ends with bang,

- [good] easy to remember the method names
- [bad] too many bang is less useful for attention

e Consistency and Usability conflicts here

Complex Design Example
block and lambda

 Ruby has lambda as Scheme
lambda {|x| x + 1} # (lambda (x) (+ x 1))

 But block is used much more frequently
obj.method(args) { ... }

 Ruby's method call can take a block
array.map {|x| x + 1 }

e Similar to higher order function
(map (lambda (x) (+ x 1)) array)

e {Ix| x+ 1} is not an expression but a builtin
syntax for method call

Block violates simplicity

« lambda can be used instead of block

e block is not usable if two or more functions
are passed

 Simpler design: no block. lambda only

Why block?

 There are many usages for method call with
single block

e block is succinct than lambda
- a.map {x| x+ 1}
- (map (lambda (x) (+ x 1)) a)

* |less nestings

e Succinct programs are easy to read and write
(if not too succinct)

Succinctness

e Succinct program is easy to write
- less number of types (or keystrokes)
e Succinct program is easy to read

- less number of program elements

Simplicity v.s. Usability

 |f Ruby don't have block,

- [good] syntax and semantics are simplified
- [bad] make programs less succinct

e Simplicity and usability conflicts here

Bad Inconsistency

There are bad inconsistencies in Ruby

 Arguments passing semantics different
between block and method

- Almost fixed in Ruby 1.9

e "utc" and "local” method in Time class is
destructive

- hard to fix because incompatibility
e efc.

How to cope with the conflicts

Resolve conflicts if possible

Prefer one which is more important
Decide it objectively if possible
Decide it subjectively, or

Don't decide until possible

Hard to Formalize the Decision

 No absolute axiom/theory
« Good programmers do it implicitly
« Somewhat subjective

How to explain the
decision method

* Various techniques are used for usability

 We should compare advantage and
disadvantage of the technique

* This is difficult to be quantitative

* Design pattens (pattern language) would be
a good way to describe them

Possible Pattern
Optimize for Common Usage

 bang-methods and block concentrates
common usage

 How to apply:

- Guess common usage

* imperative style

 higher order function which takes single function
- Optimize for that

 bang methods
* block

Possible Pattern
Incremental Design

« We may not certain about common usage
- Imperative style is really common?
- Single block is really useful in most case?
 Find common usage in experience
- idiom
- code search
- etc.
* Avoid future incompatibilities

- Method name should explain the behavior to
avoid future method renaming

Other possible patterns

 Fewer class/arguments

* Feature-rich (many methods) class than
compact class

« DRY (Don't Repeat Yourself)
* Delay decisions

 Respect programmer's knowledge

« Concentrate to base level programming over
meta programming

« DSL (Domain Specific Languages)
 White spaces for structures

Summary

» Usability can conflict with the other good
properties

 There are various techniques for usability

- optimize for common usages
- incremental design
- efc.

* Design patterns would be good to describe
the techniques

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

