
open-uri, Easy-to-Use and
Extensible Virtual File System

Tanaka Akira
akr@m17n.org

Free Software Initiative Group,
Information Technology Research Institute,

National Institute of Advanced Industrial Science and Technology (AIST)

2005–10–14

open-uri, Easy-to-Use and Extensible Virtual File System – p. 1

Table of Contents
• Who am I?
• How to use open-uri
• Why open-uri?
• open-uri and net/http
• How to design easy-to-use API
• Easy-to-use v.s. security
• VFS – Virtual File System

open-uri, Easy-to-Use and Extensible Virtual File System – p. 2

Who am I?

open-uri, Easy-to-Use and Extensible Virtual File System – p. 3

Who am I (1)

The author of open-uri and
several standard libraries:

open-uri.rb, pathname.rb, time.rb, pp.rb,
prettyprint.rb, resolv.rb, resolv-replace.rb, tsort.rb

open-uri, Easy-to-Use and Extensible Virtual File System – p. 4

Who am I (2)

Contribution for various
classes and methods.
IO without stdio
IO#read and readpartial

Time Time.utc Time#utc_offset

allocate marshal_dump marshal_load

Regexp#to_s Regexp.union

Process.daemon
fork kills all other threads

open-uri, Easy-to-Use and Extensible Virtual File System – p. 5

Who am I (3)
I reports many bugs, over 100/year.

• core dump
• test failure
• build problem
• mismatch between doc. and imp.
• etc.

open-uri, Easy-to-Use and Extensible Virtual File System – p. 6

Who am I (4)
I wrote several non-standard libraries.

• htree
• webapp
• amarshal
• ruby-tzfile
• vfs-simple

open-uri, Easy-to-Use and Extensible Virtual File System – p. 7

How to Use
open-uri

open-uri, Easy-to-Use and Extensible Virtual File System – p. 8

Simple Usage
require ’open-uri’

open("http://www.ruby-lang.org"){

|f|

print f.read

}

Similar to open files.

open-uri, Easy-to-Use and Extensible Virtual File System – p. 9

Why
open-uri?

open-uri, Easy-to-Use and Extensible Virtual File System – p. 10

Why open-uri?

• Easy-to-Use API
• VFS: Not Only HTTP

open-uri, Easy-to-Use and Extensible Virtual File System – p. 11

open-uri
and

net/http
open-uri, Easy-to-Use and Extensible Virtual File System – p. 12

net/http has Too Many Ways
Net::HTTP.get_print
Net::HTTP.get
Net::HTTP.start{|h| h.get }
Net::HTTP.start{|h|
h.request_get{|r|}}
h = Net::HTTP.new; h.start {|h|
h.request_get {|r| } }
h = Net::HTTP.new; h.start {|h|
q = HTTP::Get.new
h.request(q){|r|}}

open-uri, Easy-to-Use and Extensible Virtual File System – p. 13

open-uri has Fewer Ways
open(uri) {|f| }
uri.open {|f| }
uri.read

• Save User’s Memory

• Reuse User’s Knowledge

open-uri, Easy-to-Use and Extensible Virtual File System – p. 14

net/http: get and print
Net::HTTP.get_print(
URI("http://host"))

print Net::HTTP.get(
URI("http://host"))

open-uri, Easy-to-Use and Extensible Virtual File System – p. 15

open-uri: get and print
open("http://host") {|f|
print f.read

}

print URI("http://host").read

open-uri, Easy-to-Use and Extensible Virtual File System – p. 16

get and print
net/http:

• Net::HTTP.get_print : print only
• Net::HTTP.get : good

open-uri:
• open : conventional
• URI().read : short, polymorphism

open-uri, Easy-to-Use and Extensible Virtual File System – p. 17

Why Easy?
open("http://host")

• No new construct

• Users don’t need to learn.

open-uri respects user
knowledges.

open-uri, Easy-to-Use and Extensible Virtual File System – p. 18

net/http: headers
Net::HTTP.start ("host") {|h|
r = h. get ("/" ,

"User-Agent" => "bar")
p r["Content-Type"]
print r. body

}

• No URI anymore

• No Net::HTTP.get anymore

• Net::HTTP.start, Net::HTTP#get and
Net::HTTP::Response#body instead.open-uri, Easy-to-Use and Extensible Virtual File System – p. 19

open-uri: headers
open("http://host",

"User-Agent" => "bar") {|f|
p f.content_type
print f.read

}

• Still URI

• Still open method

• Fewer things to learn.

open-uri, Easy-to-Use and Extensible Virtual File System – p. 20

net/http: SSL
require "net/https"

h = Net::HTTP.new("host", 443)
h.use_ssl = true
h.ca_file = "/etc/ssl/certs/ca-certificates.crt"
h.verify_mode = OpenSSL::SSL::VERIFY_PEER
h. start {
r = h.get("/")
print r.body

}
• Different library: net/https

• Net::HTTP.new and Net::HTTP#start

• Different port

• Server verification not by default

• New SSL methods

open-uri, Easy-to-Use and Extensible Virtual File System – p. 21

open-uri: SSL
open("https://host") {|f|
print f.read

}

• Still URI

• Still open method

• Server verification by default

• No new library.

• No new methods. Fewer things to learn.

open-uri, Easy-to-Use and Extensible Virtual File System – p. 22

net/http: proxy
klass = Net::HTTP::Proxy("proxy", 8080)

klass.start("host") {|h|

r = h.get("/")

print r.body

}

• New method: Net::HTTP::Proxy

open-uri, Easy-to-Use and Extensible Virtual File System – p. 23

open-uri: proxy
% http_proxy=http://proxy:8080/
% export http_proxy

• Conventional environment variable supported

• No new methods. An user might know this
already.

• Fewer things to learn.

open-uri, Easy-to-Use and Extensible Virtual File System – p. 24

net/http: basic auth
Net::HTTP.start("host") {|h|
q = Net::HTTP::Get .new("/")
q.basic_auth "user", "pass"
r = h. request (q)
print r.body

}

• New class: Net::HTTP::Get

• New method: Net::HTTP#request

open-uri, Easy-to-Use and Extensible Virtual File System – p. 25

open-uri: basic auth
open("http://host",
:http_basic_authentication=>

["user", "pass"]) {|f|
print f.read

}

• Still URI

• Still open method

• New option: :http_basic_authentication

• No new methods. Fewer things to learn.
open-uri, Easy-to-Use and Extensible Virtual File System – p. 26

How to
Design

Easy-to-Use
API

open-uri, Easy-to-Use and Extensible Virtual File System – p. 27

How to Design Easy-to-Use
API

• Save brain power
• Evolve gradually

open-uri, Easy-to-Use and Extensible Virtual File System – p. 28

Save Brain Power

Fewer Things to Learn
• Fewer constructs for pragmatic usages
• Huffman coding
• DRY
• No configuration is good configuration
• Reuse user knowledge
• Infrastructure friendly

open-uri, Easy-to-Use and Extensible Virtual File System – p. 29

Fewer Constructs for Prag-
matic Usages
Fewer constructs decrease things to
learn

• open v.s. Net::HTTP.get,
Net::HTTP#get, etc.

• This is not minimalism.
• The target of "fewer" is not all

constructs.

Pragmatic usages should be supported
by small constructs.

open-uri, Easy-to-Use and Extensible Virtual File System – p. 30

Fewer Constructs (2)

primitives
methods

convenience

should be smaller

rarely used
frequently used for
pragmatic usages

open-uri, Easy-to-Use and Extensible Virtual File System – p. 31

Ex. net/http and open-uri
Methods frequently used:
net/http Net::HTTP.start, Net::HTTP#get
open-uri open
open-uri’s fewer constructs supports
much more features.

open-uri, Easy-to-Use and Extensible Virtual File System – p. 32

Huffman Coding
• Shorter for frequent things

• Longer for rare things

Optimize for frequent things.
Ex: p

open-uri, Easy-to-Use and Extensible Virtual File System – p. 33

Huffman Coding (2)

primitives
methods

convenience

shorter methodslonger methods

rarely used frequently used

open-uri, Easy-to-Use and Extensible Virtual File System – p. 34

Ex. p
p obj

• Very frequently used
• Bad name in common sense
• Almost no problem because everyone

knows

open-uri, Easy-to-Use and Extensible Virtual File System – p. 35

Ex. pp and y
• Bad name in common sense
• Problematic than p because not

everyone knows

open-uri, Easy-to-Use and Extensible Virtual File System – p. 36

Ex. to_s and to_str
to s shorter. frequently used.
to str longer. internal use.

open-uri, Easy-to-Use and Extensible Virtual File System – p. 37

Ex. def
def shorter. frequently used.
define method longer. not encouraged.

open-uri, Easy-to-Use and Extensible Virtual File System – p. 38

Ex. time.rb
Time.parse frequently used.
Time.strptime generic. needs to learn the

format.

Time.parse is less flexible but enough for
most cases, and easy to learn.

open-uri, Easy-to-Use and Extensible Virtual File System – p. 39

Candidates for Huffman Cod-
ing

• Method name
• Other name
• Convenience method
• Language syntax
• etc.

open-uri, Easy-to-Use and Extensible Virtual File System – p. 40

Length for Huffman Coding
• Number of characters
• Number of nodes in AST
• Editor keystrokes
• etc.

open-uri, Easy-to-Use and Extensible Virtual File System – p. 41

Encourage Good Style
• Programmers like short code
• Short code should be designed as

good style

open-uri, Easy-to-Use and Extensible Virtual File System – p. 42

DRY

Don’t
Repeat
Yourself

open-uri, Easy-to-Use and Extensible Virtual File System – p. 43

DRY Violation
Net::HTTP .start("host") {|h|
q = Net::HTTP ::Get.new("/")
q.basic auth "user", "pass"
r = h.request(q)
print r.body

}

open-uri, Easy-to-Use and Extensible Virtual File System – p. 44

No Configuration is Good
Configuration
Things should be work well out-of-box.

• SSL CA certificates
• http_proxy environment variable

open-uri, Easy-to-Use and Extensible Virtual File System – p. 45

Bad Examples
• ext/iconv/config.charset
• soap_use_proxy
• require "irb/completion"
• RUBYOPT=rubygems

open-uri, Easy-to-Use and Extensible Virtual File System – p. 46

Reuse User Knowledge
open-uri reuse user knowledge.

• open is used to access an external
resource

• If a block is given for open, it is called
with a file object

Various knowledge about open is
reused.
Fewer things to learn.

open-uri, Easy-to-Use and Extensible Virtual File System – p. 47

Reusable Knowledge
• Ruby builtin (popular) method
• Consistency
• Unix
• Standards: POSIX, RFC, etc.
• Metaphor

open-uri, Easy-to-Use and Extensible Virtual File System – p. 48

Consistency
• bang methods
• each_with_index
• etc.

Consistency violation:
• Time#utc is destructive

open-uri, Easy-to-Use and Extensible Virtual File System – p. 49

Metaphor
• HTTP is a kind of a network file

system
• open-uri doesn’t support beyond file

system: POST, etc

open-uri, Easy-to-Use and Extensible Virtual File System – p. 50

Infrastructure Friendly
• emacs, vi
• line oriented tools
• shell and file system
• web browser

Prefer
"It is easy using the legacy tool XXX"
over
"It is easy using the new tool YYY"

open-uri, Easy-to-Use and Extensible Virtual File System – p. 51

Evolve Gradually

• Adaptive Huffman coding

• How to find bad API

• How to avoid
incompatibility

• Incompatible change
open-uri, Easy-to-Use and Extensible Virtual File System – p. 52

Adaptive Huffman Coding
What methods are used frequently?

• Long method name at first
• Alias to short name later
• Define convenience methods for

idioms

open-uri, Easy-to-Use and Extensible Virtual File System – p. 53

Adaptive Huffman Coding (2)
• Short names and operators should be

used carefully
• Use a long name if hesitate
• Alias is not a bad thing (TMTOWTDI)
• Primitives should have long names
• Define new method for idiom

open-uri, Easy-to-Use and Extensible Virtual File System – p. 54

Operators
• CGI#[] and CGI#params

CGI#[] was defined unsuitably.
• Hash#[]

primitive: Hash#fetch

open-uri, Easy-to-Use and Extensible Virtual File System – p. 55

How to Find Bad API
• Repeated surprise
• Often cannot remember
• Idiom

open-uri, Easy-to-Use and Extensible Virtual File System – p. 56

Repeated Surprise
Example:

• Time#utc is destructive
• Iconv.iconv returns an array
• String#gsub(/\\/, ’\\\\’) has no

effect
• etc.

Violate POLS

open-uri, Easy-to-Use and Extensible Virtual File System – p. 57

Often Cannot Remember
Manual is required again and again for
same issue.

• RubyUnit
• optparse

open-uri, Easy-to-Use and Extensible Virtual File System – p. 58

RubyUnit
require ’runit /testcase ’
require ’runit/cui/testrunner’

class TestC < RUNIT ::TestCase
def test unit

...
end

end

RUNIT::CUI::TestRunner.run(
TestC.suite)

open-uri, Easy-to-Use and Extensible Virtual File System – p. 59

Test::Unit
require ’test / unit’

class TestC <
Test::Unit ::TestCase

def test unit
...

end
end
Test::Unit removed code for runner.

open-uri, Easy-to-Use and Extensible Virtual File System – p. 60

optparse
require ’optparse’
ARGV.options {|q|

q.on ("-h") { puts q }
q.on("-v") { $VERBOSE = true }
q.parse!

}

open-uri, Easy-to-Use and Extensible Virtual File System – p. 61

Idiom
• Repeated code
• Violate DRY
• An idiom may be good
• An idiom may be bad

Bad idiom example:
• Iconv.iconv()[0]

open-uri, Easy-to-Use and Extensible Virtual File System – p. 62

How to Avoid Incompatibility
Extension without Incompatibility:

• new method
• new keyword argument
• new constants

Introducing new names has no
compatibility problem. (in most case)

open-uri, Easy-to-Use and Extensible Virtual File System – p. 63

Incompatible Change

Incompatible Change
is a Bad Thing

But fixing bad API involves incompatible change,
sometimes.

open-uri, Easy-to-Use and Extensible Virtual File System – p. 64

Incompatible Change
API Migration Example

• net/http: API version
• cgi: special implementation for a

transition period
• fork: warning after change
• IO#read: warning before change
• etc.

open-uri, Easy-to-Use and Extensible Virtual File System – p. 65

net/http: API version
Net::HTTP has two APIs.

• Ruby 1.6: API version 1.1
• Ruby 1.7: API version 1.2

API version can be switched dynamically.

open-uri, Easy-to-Use and Extensible Virtual File System – p. 66

net/http: switch API version
Net::HTTP.version_1_1
... use 1.1 API ...

Net::HTTP.version_1_2
... use 1.2 API ...

• It tends to forget restore API version
• Global switch – not thread safe

open-uri, Easy-to-Use and Extensible Virtual File System – p. 67

cgi: special implementation
for a transition period
CGI#[] returns:

• Ruby 1.6: an array of parameters
• Ruby 1.8: transition period
• future?: a first parameter or nil

open-uri, Easy-to-Use and Extensible Virtual File System – p. 68

cgi: special implementation
for a transition period
CGI#[] returns something tweaked on
Ruby 1.8.
Try to work as both Array and String.

• Ruby 1.8.0: subclass of String
• Ruby 1.8.1: subclass of

DelegateClass(String)
• Ruby 1.8.2: extended String

open-uri, Easy-to-Use and Extensible Virtual File System – p. 69

fork: warning after change
Does fork kill other threads in child
process?

• Ruby 1.6: No
• Ruby 1.8: Yes

open-uri, Easy-to-Use and Extensible Virtual File System – p. 70

fork: warning after change
% ruby -e ’Thread.new{sleep};fork’

• Ruby 1.6: No warning
• Ruby 1.8.0: No warning
• Ruby 1.8.1: warning:

fork terminates thread
• Ruby 1.8.2: No warning

open-uri, Easy-to-Use and Extensible Virtual File System – p. 71

IO#read: warning before
change
IO#read will block even if
O_NONBLOCK is set.

• Ruby 1.8: doesn’t block
• Ruby 1.9: block

open-uri, Easy-to-Use and Extensible Virtual File System – p. 72

IO#read: warning before
change
IO#read will block even if
O_NONBLOCK is set.

• Ruby 1.8.2: No warning
• Ruby 1.8.3: warning:

nonblocking IO#read is obsolete;
use IO#readpartial or IO#sysread

• Ruby 1.9: No warning
warning only if verbose mode.

open-uri, Easy-to-Use and Extensible Virtual File System – p. 73

Easy-to-Use
v.s. Security

open-uri, Easy-to-Use and Extensible Virtual File System – p. 74

Easy-to-Use v.s. Security
• HTTP_PROXY
• http://user:pass@host/
• redirection and taint
• File.open(uri)

open-uri, Easy-to-Use and Extensible Virtual File System – p. 75

VFS
Virtual File

System
open-uri, Easy-to-Use and Extensible Virtual File System – p. 76

VFS
• Why VFS?
• What is VFS
• VFS and polymorphism
• Polymorphic open
• Other Resources
• Other Operations
• Security Considerations

open-uri, Easy-to-Use and Extensible Virtual File System – p. 77

Why VFS?
Typical simple program:

• Load an external resource
• Process the resource
• Store the result

VFS ease the first step.

open-uri, Easy-to-Use and Extensible Virtual File System – p. 78

What is VFS
VFS provides:

• open a http/ftp/... resource
• read a http/ftp/... resource
• etc.

filesystem like operations for
non-filesystem target
Polymorphism of filesystem

open-uri, Easy-to-Use and Extensible Virtual File System – p. 79

VFS and polymorphism
The polymorphism can be implemented
by:

• usual method dispatch mechanism
• own mechanism

open-uri uses the method dispatch for
the polymorphism.

open-uri, Easy-to-Use and Extensible Virtual File System – p. 80

Polymorphic open
If open-uri is in effect:

• open("http://...") calls
URI("http://...").open

• open("ftp://...") calls
URI("ftp://...").open

• etc.

Any URI can be opened if the URI has
open method.

open-uri, Easy-to-Use and Extensible Virtual File System – p. 81

Other Resources
LDAP:
class URI::LDAP
def open(*args)

...
end

end

open("ldap://...") { ... }

open-uri, Easy-to-Use and Extensible Virtual File System – p. 82

Other Operations
• URI("http://...").read
• Other operations should be defined

for polymorphic to Pathname in future.

open-uri, Easy-to-Use and Extensible Virtual File System – p. 83

Security Considerations
• open("|...")
• File.open is not affected

open-uri, Easy-to-Use and Extensible Virtual File System – p. 84

Summary
• How to design Easy-to-Use API

• Save brain power
• Evolve gradually

• VFS by open-uri

open-uri, Easy-to-Use and Extensible Virtual File System – p. 85

	Table of Contents
	Who am I (1)
	Who am I (2)
	Who am I (3)
	Who am I (4)
	Simple Usage
	Why open-uri?
	net/http has Too Many Ways
	open-uri has Fewer Ways
	net/http: get and print
	open-uri: get and print
	get and print
	Why Easy?
	net/http: headers
	open-uri: headers
	net/http: SSL
	open-uri: SSL
	net/http: proxy
	open-uri: proxy
	net/http: basic auth
	open-uri: basic auth
	How to Design Easy-to-Use API
	Save Brain Power
	Fewer Constructs for Pragmatic Usages
	Fewer Constructs (2)
	Ex. net/http and open-uri
	Huffman Coding
	Huffman Coding (2)
	Ex. p
	Ex. pp and y
	Ex. to_s and to_str
	Ex. def
	Ex. time.rb
	Candidates for Huffman Coding
	Length for Huffman Coding
	Encourage Good Style
	DRY
	DRY Violation
	No Configuration is Good Configuration
	Bad Examples
	Reuse User Knowledge
	Reusable Knowledge
	Consistency
	Metaphor
	Infrastructure Friendly
	Evolve Gradually
	Adaptive Huffman Coding
	Adaptive Huffman Coding (2)
	Operators
	How to Find Bad API
	Repeated Surprise
	Often Cannot Remember
	RubyUnit
	Test::Unit
	optparse
	Idiom
	How to Avoid Incompatibility
	Incompatible Change
	Incompatible Change
	net/http: API version
	net/http: switch API version
	cgi: special implementation for a transition period
	cgi: special implementation for a transition period
	fork: warning after change
	fork: warning after change
	IO#read: warning before change
	IO#read: warning before change
	Easy-to-Use v.s. Security
	VFS
	Why VFS?
	What is VFS
	VFS and polymorphism
	Polymorphic open
	Other Resources
	Other Operations
	Security Considerations
	Summary

