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Who am I?
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Who am I (1)

The author of open-uri and
several standard libraries:

open-uri.rb, pathname.rb, time.rb, pp.rb,
prettyprint.rb, resolv.rb, resolv-replace.rb, tsort.rb
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Who am I (2)

Contribution for various
classes and methods.
IO without stdio
IO#read and readpartial

Time Time.utc Time#utc_offset

allocate marshal_dump marshal_load

Regexp#to_s Regexp.union

Process.daemon
fork kills all other threads
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Who am I (3)
I reports many bugs, over 100/year.

• core dump
• test failure
• build problem
• mismatch between doc. and imp.
• etc.
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Who am I (4)
I wrote several non-standard libraries.

• htree
• webapp
• amarshal
• ruby-tzfile
• vfs-simple
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How to Use
open-uri
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Simple Usage
require ’open-uri’

open("http://www.ruby-lang.org"){

|f|

print f.read

}

Similar to open files.
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Why
open-uri?

open-uri, Easy-to-Use and Extensible Virtual File System – p. 10



Why open-uri?

• Easy-to-Use API
• VFS: Not Only HTTP
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open-uri
and

net/http
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net/http has Too Many Ways
Net::HTTP.get_print
Net::HTTP.get
Net::HTTP.start{|h| h.get }
Net::HTTP.start{|h|
h.request_get{|r|}}
h = Net::HTTP.new; h.start {|h|
h.request_get {|r| } }
h = Net::HTTP.new; h.start {|h|
q = HTTP::Get.new
h.request(q){|r|}}
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open-uri has Fewer Ways
open(uri) {|f| }
uri.open {|f| }
uri.read

• Save User’s Memory

• Reuse User’s Knowledge

open-uri, Easy-to-Use and Extensible Virtual File System – p. 14



net/http: get and print
Net::HTTP.get_print(
URI("http://host"))

print Net::HTTP.get(
URI("http://host"))
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open-uri: get and print
open("http://host") {|f|
print f.read

}

print URI("http://host").read
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get and print
net/http:

• Net::HTTP.get_print : print only
• Net::HTTP.get : good

open-uri:
• open : conventional
• URI().read : short, polymorphism
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Why Easy?
open("http://host")

• No new construct

• Users don’t need to learn.

open-uri respects user
knowledges.
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net/http: headers
Net::HTTP.start ( "host" ) {|h|
r = h. get ( "/" ,

"User-Agent" => "bar")
p r["Content-Type"]
print r. body

}

• No URI anymore

• No Net::HTTP.get anymore

• Net::HTTP.start, Net::HTTP#get and
Net::HTTP::Response#body instead.open-uri, Easy-to-Use and Extensible Virtual File System – p. 19



open-uri: headers
open("http://host",

"User-Agent" => "bar") {|f|
p f.content_type
print f.read

}

• Still URI

• Still open method

• Fewer things to learn.
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net/http: SSL
require "net/https"

h = Net::HTTP.new("host", 443 )
h.use_ssl = true
h.ca_file = "/etc/ssl/certs/ca-certificates.crt"
h.verify_mode = OpenSSL::SSL::VERIFY_PEER
h. start {
r = h.get("/")
print r.body

}
• Different library: net/https

• Net::HTTP.new and Net::HTTP#start

• Different port

• Server verification not by default

• New SSL methods
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open-uri: SSL
open("https://host") {|f|
print f.read

}

• Still URI

• Still open method

• Server verification by default

• No new library.

• No new methods. Fewer things to learn.
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net/http: proxy
klass = Net::HTTP::Proxy("proxy", 8080)

klass.start("host") {|h|

r = h.get("/")

print r.body

}

• New method: Net::HTTP::Proxy
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open-uri: proxy
% http_proxy=http://proxy:8080/
% export http_proxy

• Conventional environment variable supported

• No new methods. An user might know this
already.

• Fewer things to learn.
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net/http: basic auth
Net::HTTP.start("host") {|h|
q = Net::HTTP::Get .new("/")
q.basic_auth "user", "pass"
r = h. request (q)
print r.body

}

• New class: Net::HTTP::Get

• New method: Net::HTTP#request
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open-uri: basic auth
open("http://host",
:http_basic_authentication=>

["user", "pass"]) {|f|
print f.read

}

• Still URI

• Still open method

• New option: :http_basic_authentication

• No new methods. Fewer things to learn.
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How to
Design

Easy-to-Use
API
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How to Design Easy-to-Use
API

• Save brain power
• Evolve gradually
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Save Brain Power

Fewer Things to Learn
• Fewer constructs for pragmatic usages
• Huffman coding
• DRY
• No configuration is good configuration
• Reuse user knowledge
• Infrastructure friendly
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Fewer Constructs for Prag-
matic Usages
Fewer constructs decrease things to
learn

• open v.s. Net::HTTP.get,
Net::HTTP#get, etc.

• This is not minimalism.
• The target of "fewer" is not all

constructs.

Pragmatic usages should be supported
by small constructs.
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Fewer Constructs (2)

primitives
methods

convenience

should be smaller

rarely used
frequently used for
pragmatic usages
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Ex. net/http and open-uri
Methods frequently used:
net/http Net::HTTP.start, Net::HTTP#get
open-uri open
open-uri’s fewer constructs supports
much more features.
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Huffman Coding
• Shorter for frequent things

• Longer for rare things

Optimize for frequent things.
Ex: p
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Huffman Coding (2)

primitives
methods

convenience

shorter methodslonger methods

rarely used frequently used
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Ex. p
p obj

• Very frequently used
• Bad name in common sense
• Almost no problem because everyone

knows
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Ex. pp and y
• Bad name in common sense
• Problematic than p because not

everyone knows
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Ex. to_s and to_str
to s shorter. frequently used.
to str longer. internal use.
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Ex. def
def shorter. frequently used.
define method longer. not encouraged.
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Ex. time.rb
Time.parse frequently used.
Time.strptime generic. needs to learn the

format.

Time.parse is less flexible but enough for
most cases, and easy to learn.

open-uri, Easy-to-Use and Extensible Virtual File System – p. 39



Candidates for Huffman Cod-
ing

• Method name
• Other name
• Convenience method
• Language syntax
• etc.
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Length for Huffman Coding
• Number of characters
• Number of nodes in AST
• Editor keystrokes
• etc.
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Encourage Good Style
• Programmers like short code
• Short code should be designed as

good style
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DRY

Don’t
Repeat
Yourself
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DRY Violation
Net::HTTP .start("host") {|h|
q = Net::HTTP ::Get.new("/")
q.basic auth "user", "pass"
r = h.request(q)
print r.body

}
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No Configuration is Good
Configuration
Things should be work well out-of-box.

• SSL CA certificates
• http_proxy environment variable
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Bad Examples
• ext/iconv/config.charset
• soap_use_proxy
• require "irb/completion"
• RUBYOPT=rubygems
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Reuse User Knowledge
open-uri reuse user knowledge.

• open is used to access an external
resource

• If a block is given for open, it is called
with a file object

Various knowledge about open is
reused.
Fewer things to learn.
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Reusable Knowledge
• Ruby builtin (popular) method
• Consistency
• Unix
• Standards: POSIX, RFC, etc.
• Metaphor
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Consistency
• bang methods
• each_with_index
• etc.

Consistency violation:
• Time#utc is destructive
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Metaphor
• HTTP is a kind of a network file

system
• open-uri doesn’t support beyond file

system: POST, etc
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Infrastructure Friendly
• emacs, vi
• line oriented tools
• shell and file system
• web browser

Prefer
"It is easy using the legacy tool XXX"
over
"It is easy using the new tool YYY"
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Evolve Gradually

• Adaptive Huffman coding

• How to find bad API

• How to avoid
incompatibility

• Incompatible change
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Adaptive Huffman Coding
What methods are used frequently?

• Long method name at first
• Alias to short name later
• Define convenience methods for

idioms
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Adaptive Huffman Coding (2)
• Short names and operators should be

used carefully
• Use a long name if hesitate
• Alias is not a bad thing (TMTOWTDI)
• Primitives should have long names
• Define new method for idiom
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Operators
• CGI#[] and CGI#params

CGI#[] was defined unsuitably.
• Hash#[]

primitive: Hash#fetch
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How to Find Bad API
• Repeated surprise
• Often cannot remember
• Idiom
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Repeated Surprise
Example:

• Time#utc is destructive
• Iconv.iconv returns an array
• String#gsub(/\\/, ’\\\\’) has no

effect
• etc.

Violate POLS
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Often Cannot Remember
Manual is required again and again for
same issue.

• RubyUnit
• optparse
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RubyUnit
require ’runit /testcase ’
require ’runit/cui/testrunner’

class TestC < RUNIT ::TestCase
def test unit

...
end

end

RUNIT::CUI::TestRunner.run(
TestC.suite)
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Test::Unit
require ’test / unit’

class TestC <
Test::Unit ::TestCase

def test unit
...

end
end
Test::Unit removed code for runner.
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optparse
require ’optparse’
ARGV.options {|q|

q.on ("-h") { puts q }
q.on("-v") { $VERBOSE = true }
q.parse!

}
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Idiom
• Repeated code
• Violate DRY
• An idiom may be good
• An idiom may be bad

Bad idiom example:
• Iconv.iconv()[0]
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How to Avoid Incompatibility
Extension without Incompatibility:

• new method
• new keyword argument
• new constants

Introducing new names has no
compatibility problem. (in most case)
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Incompatible Change

Incompatible Change
is a Bad Thing

But fixing bad API involves incompatible change,
sometimes.
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Incompatible Change
API Migration Example

• net/http: API version
• cgi: special implementation for a

transition period
• fork: warning after change
• IO#read: warning before change
• etc.
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net/http: API version
Net::HTTP has two APIs.

• Ruby 1.6: API version 1.1
• Ruby 1.7: API version 1.2

API version can be switched dynamically.

open-uri, Easy-to-Use and Extensible Virtual File System – p. 66



net/http: switch API version
Net::HTTP.version_1_1
... use 1.1 API ...

Net::HTTP.version_1_2
... use 1.2 API ...

• It tends to forget restore API version
• Global switch – not thread safe
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cgi: special implementation
for a transition period
CGI#[] returns:

• Ruby 1.6: an array of parameters
• Ruby 1.8: transition period
• future?: a first parameter or nil
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cgi: special implementation
for a transition period
CGI#[] returns something tweaked on
Ruby 1.8.
Try to work as both Array and String.

• Ruby 1.8.0: subclass of String
• Ruby 1.8.1: subclass of

DelegateClass(String)
• Ruby 1.8.2: extended String
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fork: warning after change
Does fork kill other threads in child
process?

• Ruby 1.6: No
• Ruby 1.8: Yes
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fork: warning after change
% ruby -e ’Thread.new{sleep};fork’

• Ruby 1.6: No warning
• Ruby 1.8.0: No warning
• Ruby 1.8.1: warning:

fork terminates thread
• Ruby 1.8.2: No warning
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IO#read: warning before
change
IO#read will block even if
O_NONBLOCK is set.

• Ruby 1.8: doesn’t block
• Ruby 1.9: block

open-uri, Easy-to-Use and Extensible Virtual File System – p. 72



IO#read: warning before
change
IO#read will block even if
O_NONBLOCK is set.

• Ruby 1.8.2: No warning
• Ruby 1.8.3: warning:

nonblocking IO#read is obsolete;
use IO#readpartial or IO#sysread

• Ruby 1.9: No warning
warning only if verbose mode.
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Easy-to-Use
v.s. Security
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Easy-to-Use v.s. Security
• HTTP_PROXY
• http://user:pass@host/
• redirection and taint
• File.open(uri)
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VFS
Virtual File

System
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VFS
• Why VFS?
• What is VFS
• VFS and polymorphism
• Polymorphic open
• Other Resources
• Other Operations
• Security Considerations
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Why VFS?
Typical simple program:

• Load an external resource
• Process the resource
• Store the result

VFS ease the first step.
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What is VFS
VFS provides:

• open a http/ftp/... resource
• read a http/ftp/... resource
• etc.

filesystem like operations for
non-filesystem target
Polymorphism of filesystem

open-uri, Easy-to-Use and Extensible Virtual File System – p. 79



VFS and polymorphism
The polymorphism can be implemented
by:

• usual method dispatch mechanism
• own mechanism

open-uri uses the method dispatch for
the polymorphism.
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Polymorphic open
If open-uri is in effect:

• open("http://...") calls
URI("http://...").open

• open("ftp://...") calls
URI("ftp://...").open

• etc.

Any URI can be opened if the URI has
open method.
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Other Resources
LDAP:
class URI::LDAP
def open(*args)

...
end

end

open("ldap://...") { ... }
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Other Operations
• URI("http://...").read
• Other operations should be defined

for polymorphic to Pathname in future.
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Security Considerations
• open("|...")
• File.open is not affected
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Summary
• How to design Easy-to-Use API

• Save brain power
• Evolve gradually

• VFS by open-uri
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